[1]吕佳,邱鸿波,肖锋.基于动态阈值和差异性检验的自训练算法[J].智能系统学报,2024,19(4):839-852.[doi:10.11992/tis.202306047]
 LYU Jia,QIU Hongbo,XIAO Feng.Self-training algorithm based on dynamic threshold and difference test[J].CAAI Transactions on Intelligent Systems,2024,19(4):839-852.[doi:10.11992/tis.202306047]
点击复制

基于动态阈值和差异性检验的自训练算法

参考文献/References:
[1] LAI C I, CHUANG Y S, LEE H Y, et al. Semi-supervised spoken language understanding via self-supervised speech and language model pretraining[C]//ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 7468–7472.
[2] LIU Quande, YU Lequan, LUO Luyang, et al. Semi-supervised medical image classification with relation-driven self-ensembling model[J]. IEEE transactions on medical imaging, 2020, 39(11): 3429–3440.
[3] LI Changchun, LI Ximing, OUYANG Jihong. Semi-supervised text classification with balanced deep representation distributions[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2021: 5044–5053.
[4] VAN ENGELEN J E, HOOS H H. A survey on semi-supervised learning[J]. Machine learning, 2020, 109(2): 373–440.
[5] YANG Xiangli, SONG Zixing, KING I, et al. A survey on deep semi-supervised learning[J]. IEEE transactions on knowledge and data engineering, 2023, 35(9): 8934–8954.
[6] DUARTE J M, BERTON L. A review of semi-supervised learning for text classification[J]. Artificial intelligence review, 2023, 56(9): 9401–9469.
[7] SOHN K, BERTHELOT D, LI Chunliang, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[EB/OL]. (2020-01-21)[2023-03-25]. https://arxiv.org/abs/2001.07685.pdf.
[8] KIM J, MIN Y, KIM D, et al. ConMatch: semi-supervised learning with confidence-guided consistency regularization[C]//European Conference on Computer Vision. Cham: Springer, 2022: 674–690.
[9] ZHANG Zhiwu, JING Xiaoyuan, WANG Tiejian. Label propagation based semi-supervised learning for software defect prediction[J]. Automated software engineering, 2017, 24(1): 47–69.
[10] ISCEN A, TOLIAS G, AVRITHIS Y, et al. Label propagation for deep semi-supervised learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5070–5079.
[11] ZHAO Zhen, ZHOU Luping, WANG Lei, et al. LaSSL: label-guided self-training for semi-supervised learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(8): 9208–9216.
[12] XU Qiantong, BAEVSKI A, LIKHOMANENKO T, et al. Self-training and pre-training are complementary for speech recognition[C]//ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 3030–3034.
[13] 程康明, 熊伟丽. 一种自训练框架下的三优选半监督回归算法[J]. 智能系统学报, 2020, 15(3): 568–577
CHENG Kangming, XIONG Weili. Three-optimal semi-supervised regression algorithm under self-training framework[J]. CAAI transactions on intelligent systems, 2020, 15(3): 568–577
[14] CHEN Baixu, JIANG Junguang, WANG Ximei, et al. Debiased Self-Training for Semi-Supervised Learning[C]//Proceedings of the Annual Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2022: 92–100.
[15] WANG Yidong, CHEN Hao, HENG Qiang, et al. FreeMatch: self-adaptive thresholding for semi-supervised learning[EB/OL]. (2022-05-15)[2023-05-12].https://arxiv.org/abs/2205.07246.
[16] PARK S, KIM G, OH Y, et al. Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation[J]. Nature communications, 2022, 13: 3848.
[17] GAN Haitao, SANG Nong, HUANG Rui, et al. Using clustering analysis to improve semi-supervised classification[J]. Neurocomputing, 2013, 101: 290–298.
[18] WU Di, SHANG Mingsheng, LUO Xin, et al. Self-training semi-supervised classification based on density peaks of data[J]. Neurocomputing, 2018, 275: 180–191.
[19] ZOU Yang, YU Zhiding, LIU Xiaofeng, et al. Confidence regularized self-training[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5982–5991.
[20] MUKHERJEE S, AWADALLAH A H. Uncertainty-aware self-training for text classification with few labels[EB/OL]. (2020-06-27)[2023-05-12].https://arxiv.org/abs/2006.15315.
[21] WEI Danni, YANG Youlong, QIU Haiquan. Improving self-training with density peaks of data and cut edge weight statistic[J]. Soft computing, 2020, 24(20): 15595–15610.
[22] 吕佳, 刘强, 李帅军. 结合密度峰值和改进自然邻居的自训练算法[J]. 南京大学学报(自然科学版), 2022, 58(5): 805–815
LYU Jia, LIU Qiang, LI Shuaijun. Self-training method based on density peaks and improved natural neighbor[J]. Journal of Nanjing university (natural science edition), 2022, 58(5): 805–815
[23] LI Shuaijun, LYU Jia. Self-training algorithm based on density peaks combining globally adaptive multi-local noise filter[J]. Intelligent data analysis, 2023, 27(2): 323–343.
[24] CHEN Hao, TAO Ran, FAN Yue, et al. SoftMatch: addressing the quantity-quality trade-off in semi-supervised learning[EB/OL]. (2023-01-26)[2023-05-12].https://arxiv.org/abs/2301.10921.
[25] OUYANG Boya, SONG Yu, LI Yuhai, et al. EBOD: an ensemble-based outlier detection algorithm for noisy datasets[J]. Knowledge-based systems, 2021, 231: 107400.
[26] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93–104.
[27] GUO Lanzhe, ZHANG Zhenyu, JIANG Yuan, et al. Safe deep semi-supervised learning for unseen-class unlabeled data[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 3897–3906.
[28] XU Yi, SHANG Lei, YE Jinxing, et al. Dash: semi-supervised learning with dynamic thresholding[EB/OL]. (2021-09-01)[2023-05-12].https://arxiv.org/abs/2109.00650.
[29] GUO Lanzhe, LI Yufeng. Class-imbalanced semi-supervised learning with adaptive thresholding[C]//Proceedings of International Conference on Machine Learning. New York: ACM, 2022: 8082–8094.
[30] YAO Huifeng, HU Xiaowei, LI Xiaomeng. Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation[EB/OL]. (2022-01-21)[2023-05-12].https://arxiv.org/abs/2201.08657.
[31] 刘学文, 王继奎, 杨正国, 等. 密度峰值隶属度优化的半监督Self-Training算法[J]. 计算机科学与探索, 2022, 16(9): 2078–2088
LIU Xuewen, WANG Jikui, YANG Zhengguo, et al. Semi-supervised self-training algorithm for density peak membership optimization[J]. Journal of frontiers of computer science and technology, 2022, 16(9): 2078–2088
[32] VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning[J]. Neural networks, 2022, 145: 90–106.
[33] REN Zhongzheng, YEH R A, SCHWING A G. Not all unlabeled data are equal: learning to weight data in semi-supervised learning[EB/OL]. (2020-07-02)[2023-05-16].https://arxiv.org/abs/2007.01293.
[34] LI Ming, ZHOU Zhihua. SETRED: self-training with editing[C]//Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. New York: ACM, 2005: 611–621.
[35] WEI Zhihua, WANG Hanli, ZHAO Rui. Semi-supervised multi-label image classification based on nearest neighbor editing[J]. Neurocomputing, 2013, 119: 462–468.
[36] LI Junnan, ZHU Qingsheng, WU Quanwang. A self-training method based on density peaks and an extended parameter-free local noise filter for k nearest neighbor[J]. Knowledge-based systems, 2019, 184: 104895.
[37] HOULE M E, KRIEGEL H P, KR?GER P, et al. NII Technical Reports[R]. [S.l.: s.n.], 2009: 1–29.
[38] ZIMEK A, SCHUBERT E, KRIEGEL H P. A survey on unsupervised outlier detection in high-dimensional numerical data[J]. Statistical analysis and data mining: the ASA data science journal, 2012, 5(5): 363–387.
[39] 许子微, 陈秀宏. 自步稀疏最优均值主成分分析[J]. 智能系统学报, 2021, 16(3): 416–424
XU Ziwei, CHEN Xiuhong. Sparse optimal mean principal component analysis based on self-paced learning[J]. CAAI transactions on intelligent systems, 2021, 16(3): 416–424
[40] 陆宇,赵凌云,白斌雯,等. 基于改进的半监督聚类的不平衡分类算法[J]. 计算机应用, 2022, 42(12): 3750–3755
LU Yu, ZHAO Lingyun, BAI Binwen, et al. Imbalanced classification algorithm based on improved semi-supervised clustering[J]. Applied science and technology, 2022, 42(12): 3750–3755
[41] 陈波,朱英韬. 基于噪声估计的钢材表面图像增强与缺陷检测[J]. 应用科技, 2023, 50(3): 116–121
CHEN Bo, ZHU Yingtao. Image enhancement and defect detection of steel surface based on noise estimation[J]. Applied science and technology, 2023, 50(3): 116–121
[42] 高玉森,朱昌明,岳闻. 一种改进的增强组合特征判别性的典型相关分析[J]. 应用科技, 2022, 49(2): 119–126
GAO Yusen, ZHU Changming, YUE Wen. An improved canonical correlation analysis to enhance the discriminability of combined features[J]. Applied science and technology, 2022, 49(2): 119–126
[43] 王立国, 马骏宇, 李阳. 联合多种空间信息的高光谱半监督分类方法[J]. 哈尔滨工程大学学报, 2021, 42(2): 280–285
WANG Liguo, MA Junyu, LI Yang. Hyperspectral semi-supervised classification algorithm considering multiple spatial information[J]. Journal of Harbin Engineering University, 2021, 42(2): 280–285

备注/Memo

收稿日期:2023-06-26。
基金项目:国家自然科学基金重大项目(11991024);重庆市教委“成渝地区双城经济圈建设”科技创新项目(KJCX2020024);重庆市高校创新研究群体资助项目(CXQT20015).
作者简介:吕佳,教授,博士,主要研究方向为机器学习、数据挖掘。主持或参与国家级、省部级科研项目共20项,发表学术论文70余篇。E-mail:lvjia@cqnu.edu.cn;邱鸿波,硕士研究生,主要研究方向为机器学习、凸优化算法、噪声标签学习算法。E-mail:2021110516007@cqnu.edu.cn;肖锋,硕士研究生,主要研究方向为机器学习、数据挖掘、数据流算法。E-mail:2021210516083@cqnu.edu.cn
通讯作者:吕佳. E-mail:lvjia@cqnu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com