[1]庞荣,杨燕,冷雄进,等.基于双分支点流语义先验的路面病害分割模型[J].智能系统学报,2024,19(1):153-164.[doi:10.11992/tis.202306037]
PANG Rong,YANG Yan,LENG Xiongjin,et al.Segmentation model of pavement diseases based on semantic priori of double-branched point flow[J].CAAI Transactions on Intelligent Systems,2024,19(1):153-164.[doi:10.11992/tis.202306037]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第1期
页码:
153-164
栏目:
学术论文—智能系统
出版日期:
2024-01-05
- Title:
-
Segmentation model of pavement diseases based on semantic priori of double-branched point flow
- 作者:
-
庞荣1,2,3,4, 杨燕1,2, 冷雄进1,2, 张朋3,4, 刘言1,2
-
1. 西南交通大学 计算机与人工智能学院, 四川 成都 611756;
2. 可持续城市交通智能化教育部工程研究中心, 四川 成都 611756;
3. 招商局重庆公路工程检测中心有限公司, 重庆 400067;
4. 国家山区公路工程技术研究中心, 重庆 400067
- Author(s):
-
PANG Rong1,2,3,4, YANG Yan1,2, LENG Xiongjin1,2, ZHANG Peng3,4, LIU Yan1,2
-
1. School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China;
2. Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, Chengdu 611756, China;
3. China Merchants Chongqing Road Engineering Inspection Center Co., Ltd, Chongqing 400067, China;
4. Mountain Highway Engineering Technology Research Center, Chongqing 400067, China
-
- 关键词:
-
语义先验信息; 高效注意力机制; 互协方差注意力机制; 稀疏主体点流; 类别不平衡; 语义分割; 路面病害; 深度学习
- Keywords:
-
semantic priori information; efficient attention mechanism; cross-covariance image transformers attention mechanism; sparse subject sampling point flow; category imbalance; semantic segmentation; pavement diseases; deep learning
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202306037
- 文献标志码:
-
2024-01-03
- 摘要:
-
针对基于深度学习的真实路面病害图像识别算法主要面临的复杂道路背景与病害前景比例不同、病害尺度小等导致的类别严重不平衡、路面病害与道路的几何结构特征对比不明显导致其不易识别等问题,本文提出一种基于双分支语义先验网络,用于指导自注意力骨干特征网络挖掘背景与病害前景的复杂关系,运用高效自注意力机制和互协方差自注意力机制分别对二维空间和特征通道进行语义特征提取,并引入语义局部增强模块提高局部特征聚合能力。本文提出了一种新的稀疏主体点流模块,并与传统特征金字塔网络相结合,进一步缓解路面病害的类别不平衡问题;构建了一个真实场景的道路病害分割数据集,并在该数据集和公开数据集上与多个基线模型进行对比实验,实验结果验证了本模型的有效性。
- Abstract:
-
At present, the main problems faced by real road disease image recognition algorithms based on deep learning include serious imbalance in categories caused by different proportions of complex road background and foreground of diseases, and small disease scales. What’s more, the inconspicuous contrast between pavement diseases and the geometric structure characteristics of roads leads to their difficulty in recognition. To address the above issues, we propose a semantic prior two-branch network to guide Transformer’s backbone feature network in mining the complex relationship between background and foreground of pavement disease. It uses high-efficiency self-attention mechanism and cross-covariance image transformers(XCiT) to extract semantic features from two-dimensional space and feature channels, respectively, and a semantic locally-enhanced feed-forward (SLeff) module to improve the ability of local feature aggregation. We also propose a new sparse subject sampling point stream module, which is combined with the traditional FPN structure to further alleviate the category imbalance problem of pavement diseases. Finally, we constructed the road disease segmentation dataset based on real scene and compared it with multiple baseline models on this dataset and public dataset. The experimental results demonstrated effectiveness of this model.
备注/Memo
收稿日期:2023-06-15。
基金项目:国家自然科学基金项目(61976247);国家重大研发计划项目(2019YFB-1310400);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0100);重庆市交通科技自筹项目(CQJT20-22ZC05)
作者简介:庞荣,博士研究生,主要研究方法为人工智能、深度学习、大数据分析与挖掘和高速公路智能检测。E-mail:519231410@qq.com;杨燕,教授,博士生导师,西南交通大学计算机与人工智能学院副院长、中国计算机学会杰出会员,主要研究方向为人工智能、大数据分析与挖掘、多视图学习、云计算和云服务。主持国家自然科学基金等项目10余项。发表学术论文230余篇。E-mail: yyang@swjtu.edu.cn;冷雄进,硕士研究生,主要研究方向为人工智能和计算机视觉。E-mail:2932985761@qq.com
通讯作者:杨燕. E-mail:yyang@swjtu.edu.cn
更新日期/Last Update:
1900-01-01