[1]徐怡,张杰.基于划分序乘积空间的多尺度决策模型[J].智能系统学报,2024,19(6):1528-1538.[doi:10.11992/tis.202306026]
 XU Yi,ZHANG Jie.Multi-scale decision model based on partition order product space[J].CAAI Transactions on Intelligent Systems,2024,19(6):1528-1538.[doi:10.11992/tis.202306026]
点击复制

基于划分序乘积空间的多尺度决策模型

参考文献/References:
[1] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341-356.
[2] PAWLAK Z, SKOWRON A. Rudiments of rough sets[J]. Information sciences, 2007, 177(1): 3-27.
[3] YAO Jingtao. A ten-year review of granular computing[C]//2007 IEEE International Conference on Granular Computing. Fremont: IEEE, 2007: 734.
[4] WU Weizhi, LEUNG Y. Optimal scale selection for multi-scale decision tables[J]. International journal of approximate reasoning, 2013, 54(8): 1107-1129.
[5] GU Shenming, WU Weizhi. On knowledge acquisition in multi-scale decision systems[J]. International journal of machine learning and cybernetics, 2013, 4(5): 477-486.
[6] WU Weizhi, QIAN Yuhua, LI Tongjun, et al. On rule acquisition in incomplete multi-scale decision tables[J]. Information sciences, 2017, 378: 282-302.
[7] LI Feng, HU Baoqing, WANG Jun. Stepwise optimal scale selection for multi-scale decision tables via attribute significance[J]. Knowledge-based systems, 2017, 129: 4-16.
[8] LI Feng, HU Baoqing. A new approach of optimal scale selection to multi-scale decision tables[J]. Information sciences, 2017, 381: 193-208.
[9] WU Weizhi, LEUNG Y. A comparison study of optimal scale combination selection in generalized multi-scale decision tables[J]. International journal of machine learning and cybernetics, 2020, 11(5): 961-972.
[10] DENG Jiang, ZHAN Jianming, WU Weizhi. A three-way decision methodology to multi-attribute decision-making in multi-scale decision information systems[J]. Information sciences, 2021, 568: 175-198.
[11] ZHAN Jianming, ZHANG Kai, WU Weizhi. An investigation on Wu-Leung multi-scale information systems and multi-expert group decision-making[J]. Expert systems with applications, 2021, 170: 114542.
[12] WU Weizhi, LEUNG Y. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information sciences, 2011, 181(18): 3878-3897.
[13] 顾沈明, 顾金燕, 吴伟志, 等. 不完备多粒度决策系统的局部最优粒度选择[J]. 计算机研究与发展, 2017, 54(7): 1500-1509.
GU Shenming, GU Jinyan, WU Weizhi, et al. Local optimal granularity selections in incomplete multi-granular decision systems[J]. Journal of computer research and development, 2017, 54(7): 1500-1509.
[14] 吴伟志, 杨丽, 谭安辉, 等. 广义不完备多粒度标记决策系统的粒度选择[J]. 计算机研究与发展, 2018, 55(6): 1263-1272.
WU Weizhi, YANG Li, TAN Anhui, et al. Granularity selections in generalized incomplete multi-granular labeled decision systems[J]. Journal of computer research and development, 2018, 55(6): 1263-1272.
[15] HUANG Zhehuang, LI Jinjin, DAI Weizhong, et al. Generalized multi-scale decision tables with multi-scale decision attributes[J]. International journal of approximate reasoning, 2019, 115: 194-208.
[16] 宋茂林, 吴伟志. 协调的决策多尺度不完备信息系统的最优尺度选择[J]. 河北师范大学学报(自然科学版), 2022, 46(2): 117-125.
SONG Maolin, WU Weizhi. On optimal scale selection in consistent incomplete multi-scale information systems with multi-scale decisions[J]. Journal of Hebei Normal University (natural science edieion), 2022, 46(2): 117-125.
[17] HAO Chen, LI Jinhai, FAN Min, et al. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J]. Information sciences, 2017, 415/416: 213-232.
[18] ZHANG Xueqiu, ZHANG Qinghua, CHENG Yunlong, et al. Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables[J]. International journal of machine learning and cybernetics, 2020, 11(5): 1095-1114.
[19] CHENG Yunlong, ZHANG Qinghua, WANG Guoyin, et al. Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision[J]. Information sciences, 2020, 541: 36-59.
[20] WANG Wenjue, HUANG Bing, WANG Tianxing. Optimal scale selection based on multi-scale single-valued neutrosophic decision-theoretic rough set with cost-sensitivity[J]. International journal of approximate reasoning, 2023, 155: 132-144.
[21] 徐怡, 姚一豫. 划分序乘积空间: 基于划分的粒计算模型[J]. 计算机研究与发展, 2019, 56(4): 836-843.
XU Yi, YAO Yiyu. Partition order product space: partition based granular computing model[J]. Journal of computer research and development, 2019, 56(4): 836-843.
[22] 吴伟志. 多粒度粗糙集数据分析研究的回顾与展望[J]. 西北大学学报(自然科学版), 2018, 48(4): 501-512.
WU Weizhi. Reviews and prospects on the study of multi-granularity rough set data analysis[J]. Journal of Northwest University (natural science edition), 2018, 48(4): 501-512.
[23] CATANZARITI F, CHIASELOTTI G, INFUSINO F G, et al. Object similarity measures and Pawlak’s indiscernibility on decision tables[J]. Information sciences, 2020, 539: 104-135.
[24] LIU Fulun, ZHANG Benwen, CIUCCI D, et al. A comparison study of similarity measures for covering-based neighborhood classifiers[J]. Information sciences, 2018, 448/449: 1-17.
[25] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information sciences, 2010, 180(6): 949-970.
[26] QIAN Yuhua, LIANG Jiye, DANG Chuangyin. Incomplete multigranulation rough set[J]. IEEE transactions on systems, man, and cybernetics - part A: systems and humans, 2010, 40(2): 420-431.
[27] XIE Jingjing, HU Baoqing, JIANG Haibo. A novel method to attribute reduction based on weighted neighborhood probabilistic rough sets[J]. International journal of approximate reasoning, 2022, 144: 1-17.
[28] ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs computational statistics, 2010, 2(4): 433-459. [LinkOut]
[29] POLIKAR R. Ensemble learning[M]//ZHANG Cha, MA Yunqian, eds. Ensemble Machine Learning. New York: Springer New York, 2012: 1-34.
相似文献/References:
[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(6):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3():492.
[2]毋? 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(2):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4():112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2():40.
[4]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(6):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2():65.
[5]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[6]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6():132.
[7]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[8]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10():783.[doi:10.11992/tis.201406045]
[9]王金英,韩晓冰,王艳平.二型直觉模糊粗糙集[J].智能系统学报,2015,10(6):943.[doi:10.11992/tis.201412013]
 WANG Jinying,HAN Xiaobing,WANG Yanping.Type-2 intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2015,10():943.[doi:10.11992/tis.201412013]
[10]康向平,苗夺谦.一种基于概念格的集值信息系统中的知识获取方法[J].智能系统学报,2016,11(3):287.[doi:10.11992/tis.201603055]
 KANG Xiangping,MIAO Duoqian.A knowledge acquisition method based on concept latticein set-valued information systems[J].CAAI Transactions on Intelligent Systems,2016,11():287.[doi:10.11992/tis.201603055]
[11]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[12]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(2):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10():273.[doi:10.3969/j.issn.1673-4785.201312008]
[13]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11():743.[doi:10.11992/tis.201612014]
[14]徐健锋,何宇凡,汤涛,等.概率粗糙集三支决策在线快速计算算法研究[J].智能系统学报,2018,13(5):741.[doi:10.11992/tis.201706047]
 XU Jianfeng,HE Yufan,TANG Tao,et al.Research on a fast online computing algorithm based on three-way decisions with probabilistic rough sets[J].CAAI Transactions on Intelligent Systems,2018,13():741.[doi:10.11992/tis.201706047]
[15]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14():929.[doi:10.11992/tis.201807027]
[16]杨洁,王国胤,张清华.基于知识距离的粗糙粒结构的评价模型[J].智能系统学报,2020,15(1):166.[doi:10.11992/tis.201904037]
 YANG Jie,WANG Guoyin,ZHANG Qinghua.Evaluation model of rough granular structure based on knowledge distance[J].CAAI Transactions on Intelligent Systems,2020,15():166.[doi:10.11992/tis.201904037]
[17]周阳阳,钱文彬,王映龙,等.面向混合数据的代价敏感三支决策边界域分类方法[J].智能系统学报,2022,17(2):411.[doi:10.11992/tis.202012048]
 ZHOU Yangyang,QIAN Wenbin,WANG Yinglong,et al.Classification method of cost-sensitive three-way decision boundary region for hybrid data[J].CAAI Transactions on Intelligent Systems,2022,17():411.[doi:10.11992/tis.202012048]

备注/Memo

收稿日期:2023-6-13。
基金项目:国家自然科学基金项目(62076002);国家自然科学青年基金项目(61402005);安徽省自然科学面上基金项目(2008085MF194).
作者简介:徐怡,博士,教授,主要研究方向为粒计算和智能信息处理。主持国家自然科学基金项目2项、安徽省自然科学基金项目2项、安徽省高等学校省级自然科学研究项目2项。发表学术论文60余篇。E-mail:xuyi1023@126.com;张杰,硕士研究生,主要研究方向为粒计算。E-mail:zhangjie080872@163.com。
通讯作者:徐怡. E-mail:xuyi1023@126.com

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com