[1]崔志华,兰卓璇,张景波,等.基于高维多目标序贯三支决策的恶意代码检测模型[J].智能系统学报,2024,19(1):97-105.[doi:10.11992/tis.202306013]
CUI Zhihua,LAN Zhuoxuan,ZHANG Jingbo,et al.Malicious code detection model based on high-dimensional multi-objective sequential three-way decision[J].CAAI Transactions on Intelligent Systems,2024,19(1):97-105.[doi:10.11992/tis.202306013]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第1期
页码:
97-105
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-01-05
- Title:
-
Malicious code detection model based on high-dimensional multi-objective sequential three-way decision
- 作者:
-
崔志华1, 兰卓璇1, 张景波1, 张文生2
-
1. 太原科技大学 大数据分析与并行计算山西省重点实验室, 山西 太原 030024;
2. 中国科学院 自动化研究所, 北京 100089
- Author(s):
-
CUI Zhihua1, LAN Zhuoxuan1, ZHANG Jingbo1, ZHANG Wensheng2
-
1. Shanxi Key Laboratory of Big Data Analysis and Parallel Computing, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. Institute of Automation, Chinese Academy of Sciences, Beijing 100089, China
-
- 关键词:
-
恶意代码检测; 序贯三支决策; 卷积神经网络; 高维多目标优化; 基于参考点的高维多目标进化算法; 多粒度; 延迟决策; 决策阈值
- Keywords:
-
malware detection; sequential three-way decision; convolutional neural network; high-dimensional multi-objective optimization; NSGA-III; multi-granularity; delay decision; decision threshold
- 分类号:
-
TP309
- DOI:
-
10.11992/tis.202306013
- 文献标志码:
-
2024-01-08
- 摘要:
-
针对传统基于二支决策的恶意代码检测方法在面对动态环境中的复杂海量数据时,没有考虑在信息不充足条件下进行决策产生影响的问题,本文提出了一种基于卷积神经网络的序贯三支决策恶意代码检测模型。通过卷积神经网络对样本数据进行特征提取并构建多粒度特征集,引入序贯三支决策理论对恶意代码进行检测。为改善检测模型整体性能,避免阈值选取的主观性,本文在上述模型的基础上,同时考虑模型的综合分类性能、决策效率和决策风险代价建立高维多目标序贯三支决策模型,并采用高维多目标优化算法对模型进行求解。仿真结果表明,模型在保证检测性能的同时,有效地提升了决策效率,降低了决策时产生风险代价,更好地拟合了真实动态检测环境。
- Abstract:
-
In view of the problem that traditional two-way decision based malicious code detection methods fail to consider the impact of decision making under the condition of insufficient information when facing complex and massive data in a dynamic environment, this paper proposes a sequential three-way decision malware detection model based on convolutional neural network. Firstly, the features of sample data were extracted and multi-granularity feature sets were constructed through convolutional neural networks, and then the sequential three-way decision theory was introduced to detect malicious code. To improve the overall performance of the detection model and eliminate the subjectivity of threshold selection, a high-dimensional multi-objective sequential three-way decision model was built based on the above model, taking account of the comprehensive classification performance, decision efficiency and decision risk cost of the model. In addition, the high-dimensional multi-objective optimization algorithm was used to solve the model. The simulation results show that the model can not only guarantee the detection performance, but also effectively improve the decision efficiency and reduce the decision risk cost. It better fits the real dynamic detection environment.
备注/Memo
收稿日期:2023-06-07。
基金项目:国家自然科学基金项目(61806138);中央财政指导地方科技发展基金项目(YDZJSX2021A038);中国高校产学研创新基金-未来网络创新研究与应用项目(2021FNA04014);太原科技大学研究生联合培养示范基地项目(JD2022003)
作者简介:崔志华,教授,博士生导师,太原科技大学计算机科学与技术学院院长,主要研究方向为大数据建模与优化、网络安全。主持国家自然科学基金项目、教育部科学技术研究重点项目、山西省重点研发项目等10余项。发表学术论文100余篇,出版专著 4部。E-mail:cuizhihua@gmail.com;兰卓璇,硕士研究生,主要研究方向为大数据建模与优化、网络安全。E-mail:1285839182@qq.com;张文生,教授, 博士生导师, 主要研究方向为人工智能、跨模态数据标注、医疗数据分析推理。主持国家自然科学基金重点与面上项目6项、国家科技部863项目、支撑计划项目和973计划课题9项,授权发明专利40余项。发表学术论文160余篇。 E-mail:wensheng.zhang@ia.ac.cn
通讯作者:崔志华. E-mail:cuizhihua@gmail.com
更新日期/Last Update:
1900-01-01