[1]孙立辉,陈恒,商月平.基于光流和多尺度特征融合的视频去噪算法[J].智能系统学报,2024,19(6):1593-1603.[doi:10.11992/tis.202306002]
 SUN Lihui,CHEN Heng,SHANG Yueping.Video denoising based on optical flow and multi-scale features[J].CAAI Transactions on Intelligent Systems,2024,19(6):1593-1603.[doi:10.11992/tis.202306002]
点击复制

基于光流和多尺度特征融合的视频去噪算法

参考文献/References:
[1] LI J, WU X, NIU Z, et al. Unidirectional video denoising by mimicking backward recurrent modules with look-ahead forward ones [C]//European Conference on Computer Vision. Berlin: ECCV,2022: 592-609.
[2] ZHAO Yaping, ZHENG Haitian, WANG Zhongrui, et al. Manet: improving video denoising with a multi-alignment network[C]//2022 IEEE International Conference on Image Processing. Bordeaux: IEEE, 2022: 2036-2040.
[3] 刘迪, 贾金露, 赵玉卿, 等. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13.
LIU Di, JIA Jinlu, ZHAO Yuqing, et al. Overview of image denoising methods based on deep learning[J]. Computer engineering and applications, 2021, 57(7): 1-13.
[4] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE transactions on image processing: a publication of the IEEE signal processing society, 2017, 26(7): 3142-3155.
[5] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1712-1722.
[6] HELOU M, SUSSTRUNK S. Blind universal Bayesian image denoising with Gaussian noise level learning[J]. IEEE transactions on image processing: a publication of the IEEE signal processing society, 2020, 29: 4885-4897.
[7] REN Chao, HE Xiaohai, WANG Chuncheng, et al. Adaptive consistency prior based deep network for image denoising[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8592-8602.
[8] DAVY A, EHRET T, MOREL J M, et al. A non-local CNN for video denoising[C]//2019 IEEE International Conference on Image Processing. Taipei: IEEE, 2019: 2409-2413.
[9] VAKSMAN G, ELAD M, MILANFAR P. Patch craft: video denoising by deep modeling and patch matching[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 2137-2146.
[10] MAGGIONI M, HUANG Yibin, LI Cheng, et al. Efficient multi-stage video denoising with recurrent spatio-temporal fusion[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3465-3474.
[11] TASSANO M, DELON J, VEIT T. DVDNET: a fast network for deep video denoising[C]//2019 IEEE International Conference on Image Processing. Taipei: IEEE, 2019: 1805-1809.
[12] XUE Tianfan, CHEN Baian, WU Jiajun, et al. Video enhancement with task-oriented flow[J]. International journal of computer vision, 2019, 127(8): 1106-1125.
[13] CHAN K C K, WANG Xintao, YU Ke, et al. BasicVSR: the search for essential components in video super-resolution and beyond[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4945-4954.
[14] TASSANO M, DELON J, VEIT T. FastDVDnet: towards real-time deep video denoising without flow estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1351-1360.
[15] XIANG Liuyu, ZHOU Jundong, LIU Jirui, et al. ReMoNet: recurrent multi-output network for efficient video denoising[C]//The Association for the Advancement of Artificial Intelligence. Vancouver: AAAI, 2022: 2786-2794.
[16] WANG Xintao, CHAN K C K, YU Ke, et al. EDVR: video restoration with enhanced deformable convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 1954-1963.
[17] SUN Deqing, YANG Xiaodong, LIU Mingyu, et al. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8934-8943.
[18] BALLé J, LAPARRA V, SIMONCELLI E P. Density modeling of images using a generalized normalization transformation [C]//4th International Conference on Learning Representations. Puerto Rico: ICLR, 2016: 100-112.
[19] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510-519.
[20] CAO Yue, XU Jiarui, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 1971-1980.
[21] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011-2023.
[22] ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for fast image restoration and enhancement[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(2): 1934-1948.
[23] WANG Haonan, CAO Peng, WANG Jiaqi, et al. UCTransNet: rethinking the skip connections in U-net from a channel-wise perspective with transformer[C]//The Association for the Advancement of Artificial Intelligence. Vancouver: AAAI, 2022: 2441-2449.
[24] 申屠敏健. 基于先验信息和卷积神经网络的视频去噪算法研究[D]. 成都: 电子科技大学, 2021.
SHENTU Minjian. Video denoising based on prior information and convolutional neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[25] JOHNSON J, ALAHI A, LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision. Cham: Springer, 2016: 694-711.
[26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 1-14.
[27] PERAZZI F, PONT-TUSET J, MCWILLIAMS B, et al. A benchmark dataset and evaluation methodology for video object segmentation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 724-732.
[28] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
[29] KINGMA D P, BA J L. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 131-142.

备注/Memo

收稿日期:2023-6-1。
基金项目:河北省重点研发计划项目(20350801D).
作者简介:孙立辉,教授,河北经贸大学管理科学与信息工程学院院长,主要研究方向为图像处理、目标检测。获得国家发明专利授权4项,发表学术论文30余篇。E-mail:sun-lh@163.com;陈恒,硕士研究生,主要研究方向为图像处理。E-mail:chenh@hueb.edu.cn;商月平,副教授,主要研究方向为统计与数据分析。E-mail:stshangyueping@hueb.edu.cn。
通讯作者:孙立辉. E-mail:sun-lh@163.com

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com