[1]范航舟,梅红岩,赵勤,等.融合双注意力机制的GNN多维时间序列预测[J].智能系统学报,2024,19(5):1277-1286.[doi:10.11992/tis.202305020]
 FAN Hangzhou,MEI Hongyan,ZHAO Qin,et al.Multivariate time series forecasting with a graph neural network and dual attention mechanism[J].CAAI Transactions on Intelligent Systems,2024,19(5):1277-1286.[doi:10.11992/tis.202305020]
点击复制

融合双注意力机制的GNN多维时间序列预测

参考文献/References:
[1] GASPARIN A, LUKOVIC S, ALIPPI C. Deep learning for time series forecasting: The electric load case[J]. CAAI transactions on intelligence technology, 2022, 7(1): 1-25.
[2] 王锋华, 成敬周, 文凡. 快速双非凸回归算法及其电力数据预测应用[J]. 智能系统学报, 2018, 13(4): 665-672.
WANG Fenghua, CHENG Jingzhou, WEN Fan. Fast double nonconvex regression algorithm for forecast of electric power data[J]. CAAI transactions on intelligent systems, 2018, 13(4): 665-672.
[3] 程鹏超, 杜军平, 薛哲. 基于多路交叉的用户金融行为预测[J]. 智能系统学报, 2021, 16(2): 378-384.
CHENG Pengchao, DU Junping, XUE Zhe. Prediction of user financial behavior based on multi-way crossing[J]. CAAI transactions on intelligent systems, 2021, 16(2): 378-384.
[4] FANG Weiwei, ZHUO Wenhao, YAN Jingwen, et al. Attention meets long short-term memory: a deep learning network for traffic flow forecasting[J]. Physica A: statistical mechanics and its applications, 2022, 587: 126485.
[5] 李伯涵, 郭茂祖, 赵玲玲. 基于分割注意力机制残差网络的城市区域客流量预测[J]. 智能系统学报, 2022, 17(4): 839-848.
LI Bohan, GUO Maozu, ZHAO Lingling. Passenger flow prediction in urban areas based on residual networks with split attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(4): 839-848.
[6] YULE G U. On a method of investigating periodicities disturbed series, with special reference to Wolfer’s sunspot numbers[J]. Philosophical transactions of the royal society of London series A, containing papers of a mathematical or physical character, 1927, 226(1): 267-298.
[7] WALKER G T. On periodicity in series of related terms[J]. Proceedings of the royal society of London series A, containing papers of a mathematical and physical character, 1931, 131(818): 518-532.
[8] JENKINS G M, BOX G E P. Time series analysis: forecasting, and control[J]. Journal of time, 1976, 31(2): 238-242.
[9] 杨海民, 潘志松, 白玮. 时间序列预测方法综述[J]. 计算机科学, 2019, 46(1): 21-28.
YANG Haimin, PAN Zhisong, BAI Wei. Review of time series prediction methods[J]. Computer science, 2019, 46(1): 21-28.
[10] 陈艳, 王子健, 赵泽, 等. 传感器网络环境监测时间序列数据的高斯过程建模与多步预测[J]. 通信学报, 2015, 36(10): 252-262.
CHEN Yan, WANG Zijian, ZHAO Ze, et al. Gaussian process modeling and multi-step prediction for time series data in wireless sensor network environmental monitoring[J]. Journal on communications, 2015, 36(10): 252-262.
[11] LI Peixian, TAN Zhixiang, YAN Lili, et al. Time series prediction of mining subsidence based on a SVM[J]. Mining science and technology (China), 2011, 21(4): 557-562.
[12] GOSSé J B, GUILLAUMIN C. L’apport de la représentation VAR de Christopher A. Sims à la science économique[J]. L’économique en perspective, 2014, 89(4): 305-319.
[13] ELMAN J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[15] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2023-05-20]. https://arxiv.org/abs/1412.3555.
[16] QIN Yao, SONG Dongjin, CHEN Haifeng, et al. A dual-stage attention-based recurrent neural network for time series prediction[EB/OL]. (2017-04-07)[2023-05-20]. https://arxiv.org/abs/1704.02971.
[17] LAI Guokun, CHANG Weicheng, YANG Yiming, et al. Modeling long and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor: ACM, 2018: 95-104.
[18] HUANG Siteng, WANG Donglin, WU Xuehan, et al. DSANet: dual self-attention network for multivariate time series forecasting[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 2129-2132.
[19] BAI Shaojie, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-03-04)[2023-05-20]. https://arxiv.org/abs/1803.01271.
[20] LIU Minhao, ZENG Ailing, CHEN Muxi, et al. SCINet: Time series modeling and forecasting with sample convolution and interaction[J]. Advances in neural information processing systems, 2022, 35: 5816-5828.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. California: ACM, 2017: 6000–6010.
[22] WU N, GREEN B, BEN Xue, et al. Deep transformer models for time series forecasting: the influenza prevalence case[EB/OL]. (2020-01-23)[2023-05-20]. https://arxiv.org/abs/2001.08317.
[23] LI Shiyang, JIN Xiaoyong, XUAN Yao, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[EB/OL]. (2019-07-29)[2023-05-20]. https://arxiv.org/abs/1907.00235.
[24] ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[25] WU Haixu, XU Jiehui, WANG Jianmin, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in neural information processing systems, 2021, 34: 22419-22430.
[26] ZHOU Tian, MA Ziqing, WEN Qingsong, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[EB/OL]. (2022-01-30)[2023-05-20]. https://arxiv.org/abs/2201.12740.
[27] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
WU Bo, LIANG Xun, ZHANG Shusen, et al. Advances and applications in graph neural network[J]. Chinese journal of computers, 2022, 45(1): 35-68.
[28] WU Zonghan, PAN Shirui, LONG Guodong, et al. Graph WaveNet for deep spatial-temporal graph modeling[EB/OL]. (2019-05-31)[2023-05-20]. https://arxiv.org/abs/1906.00121.
[29] SATORRAS V G, RANGAPURAM S S, JANUSCHOWSKI T. Multivariate time series forecasting with latent graph inference[EB/OL]. (2022-03-07)[2023-05-20]. https://arxiv.org/abs/2203.03423.
[30] WU Zonghan, PAN Shirui, LONG Guodong, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020: 753-763.
[31] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Lecture Notes in Computer Science. Cham: Springer, 2018: 3-19.
[32] ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175.
[33] JIA Pengtao, LIU Hangduo, WANG Sujian, et al. Research on a mine gas concentration forecasting model based on a GRU network[J]. IEEE access, 2020, 8: 38023-38031.
[34] YOO J, KANG U. Attention-based autoregression for accurate and efficient multivariate time series forecasting[C]//Proceedings of the 2021 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2021: 531-539.
相似文献/References:
[1]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[2]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[3]周俊,张志强,曹月恬,等.地理位置和时间感知的表示学习框架[J].智能系统学报,2021,16(5):909.[doi:10.11992/tis.202104011]
 ZHOU Jun,ZHANG Zhiqiang,CAO Yuetian,et al.A geography and time aware representation learning framework[J].CAAI Transactions on Intelligent Systems,2021,16():909.[doi:10.11992/tis.202104011]
[4]卢毅,陈亚冉,赵冬斌,等.关键点图对比图像分类方法[J].智能系统学报,2023,18(1):36.[doi:10.11992/tis.202112001]
 LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18():36.[doi:10.11992/tis.202112001]
[5]车飞虎,张大伟,邵朋朋,等.基于四元数门控图神经网络的脚本事件预测[J].智能系统学报,2023,18(1):138.[doi:10.11992/tis.202203042]
 CHE Feihu,ZHANG Dawei,SHAO Pengpeng,et al.Script event prediction based on a quaternion-gated graph neural network[J].CAAI Transactions on Intelligent Systems,2023,18():138.[doi:10.11992/tis.202203042]
[6]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():688.[doi:10.11992/tis.202204006]
[7]周贤琛,马扬,程光权,等.战场目标实体类型识别的鲁棒图神经网络方法[J].智能系统学报,2023,18(6):1156.[doi:10.11992/tis.202111025]
 ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18():1156.[doi:10.11992/tis.202111025]
[8]曹汉童,陈璟.融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165.[doi:10.11992/tis.202212029]
 CAO Hantong,CHEN Jing.Prediction of multitype protein interactions combining Doc2vec and GCN[J].CAAI Transactions on Intelligent Systems,2023,18():1165.[doi:10.11992/tis.202212029]
[9]刘晓光,李梅.基于深度学习的药物-靶标相互作用预测研究综述[J].智能系统学报,2024,19(3):494.[doi:10.11992/tis.202308024]
 LIU Xiaoguang,LI Mei.A survey of deep learning-based drug-target interaction prediction[J].CAAI Transactions on Intelligent Systems,2024,19():494.[doi:10.11992/tis.202308024]
[10]王闪闪,巩长庆,秦华锋,等.基于深度学习的K近邻图迭代静脉识别算法研究[J].智能系统学报,2024,19(5):1149.[doi:10.11992/tis.202307009]
 WANG Shanshan,GONG Changqing,QIN Huafeng,et al.Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19():1149.[doi:10.11992/tis.202307009]

备注/Memo

收稿日期:2023-5-20。
基金项目:辽宁省教育厅科学研究项目(JZL202015404,LJKZ0625,JYTMS20230869).
作者简介:范航舟,硕士研究生,主要研究方向为时序序列预测、大数据分析、深度学习。E-mail:fanhangzhou@163.com;梅红岩,教授,博士,中国计算机学会会员,主要研究方向为深度学习、数据挖掘与大数据分析、网络服务。发表学术论文40余篇。E-mail:715014795@qq.com;赵勤,硕士研究生,主要研究方向为时序序列预测、深度学习。E-mail:1139574265@qq.com。
通讯作者:梅红岩. E-mail:715014795@qq.com

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com