[1]王德文,陈威,苏攀.基于粗到细的多尺度单幅图像去雾方法[J].智能系统学报,2024,19(5):1102-1110.[doi:10.11992/tis.202305005]
 WANG Dewen,CHEN Wei,SU Pan.Single-image dehazing via a coarse-to-fine multiscale approach[J].CAAI Transactions on Intelligent Systems,2024,19(5):1102-1110.[doi:10.11992/tis.202305005]
点击复制

基于粗到细的多尺度单幅图像去雾方法

参考文献/References:
[1] 王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6): 861-870.
WANG Daolei, ZHANG Tianyu. Review and analysis of image defogging algorithm[J]. Journal of graphics, 2020, 41(6): 861-870.
[2] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International journal of computer vision, 2002, 48(3): 233-254.
[3] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(12): 2341-2353.
[4] 张世辉, 路佳琪, 宋丹丹, 等. 基于多尺度特征结合细节恢复的单幅图像去雾方法[J]. 电子与信息学报, 2022, 44(11): 3967-3976.
ZHANG Shihui, LU Jiaqi, SONG Dandan, et al. Single image dehazing method based on multi-scale features combined with detail recovery[J]. Journal of electronics & information technology, 2022, 44(11): 3967-3976.
[5] ZHU Qingsong, MAI Jiaming, SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE transactions on image processing, 2015, 24(11): 3522-3533.
[6] 王科平, 杨艺, 费树岷. 雾霾图像清晰化算法综述[J]. 智能系统学报, 2023, 18(2): 217-230.
WANG Keping, YANG Yi, FEI Shumin. Review of hazy image sharpening methods[J]. CAAI transactions on intelligent systems, 2023, 18(2): 217-230.
[7] CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE transactions on image processing, 2016, 25(11): 5187-5198.
[8] LI Boyi, PENG Xiulian, WANG Zhangyang, et al. AOD-net: all-in-one dehazing network[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780-4788.
[9] REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]//European Conference on Computer Vision. Cham: Springer, 2016: 154-169.
[10] CHEN Dongdong, HE Mingming, FAN Qingnan, et al. Gated context aggregation network for image dehazing and deraining[C]//2019 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2019: 1375-1383.
[11] QU Yanyun, CHEN Yizi, HUANG Jingying, et al. Enhanced pix2pix dehazing network[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 8152-8160.
[12] QIN Xu, WANG Zhilin, BAI Yuanchao, et al. FFA-net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 11908-11915.
[13] WU Haiyan, QU Yanyun, LIN Shaohui, et al. Contrastive learning for compact single image dehazing[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10546-10555.
[14] 高峰, 汲胜昌, 郭洁, 等. 采用对比学习的多阶段Transformer图像去雾方法[J]. 西安交通大学学报, 2023, 57(1): 195-210.
GAO Feng, JI Shengchang, GUO Jie, et al. A multi-stage transformer network for image dehazing based on contrastive learning[J]. Journal of Xi’an Jiaotong University, 2023, 57(1): 195-210.
[15] ZHANG Hongguang, DAI Yuchao, LI Hongdong, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5971-5979.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer, 2015: 234-241.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[18] 范新南, 赵忠鑫, 严炜, 等. 结合注意力机制的多尺度特征融合图像去雾算法[J]. 计算机科学, 2022, 49(5): 50-57.
FAN Xinnan, ZHAO Zhongxin, YAN Wei, et al. Multi-scale feature fusion image dehazing algorithm combined with attention mechanism[J]. Computer science, 2022, 49(5): 50-57.
[19] CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4621-4630.
[20] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017-10-25)[2023-05-05]. https://arxiv.org/abs/1710.09412.
[21] 张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15-39.
ZHANG Chongsheng, CHEN Jie, LI Qilong, et al. Deep contrastive learning: a survey[J]. Acta automatica sinica, 2023, 49(1): 15-39.
[22] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 105-114.
[23] LI Boyi, REN Wenqi, FU Dengpan, et al. Benchmarking single-image dehazing and beyond[J]. IEEE transactions on image processing, 2019, 28(1): 492-505.
[24] ANCUTI C O, ANCUTI C, TIMOFTE R. NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1798-1805.
[25] ANCUTI C O, ANCUTI C, VASLUIANU F A, et al. NTIRE 2021 NonHomogeneous dehazing challenge report[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Nashville: IEEE, 2021: 627-646.
[26] HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558-567.
[27] DONG Hang, PAN Jinshan, XIANG Lei, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2154-2164.
相似文献/References:
[1]陈珂,柯文德,许波,等.改进的彩色图像去雾效果评价方法[J].智能系统学报,2015,10(5):803.[doi:10.11992/tis.201406003]
 CHEN Ke,KE Wende,XU Bo,et al.An improved assessment method for the color image defogging effect[J].CAAI Transactions on Intelligent Systems,2015,10():803.[doi:10.11992/tis.201406003]
[2]王科平,杨艺,费树岷.雾霾图像清晰化算法综述[J].智能系统学报,2023,18(2):217.[doi:10.11992/tis.202110029]
 WANG Keping,YANG Yi,FEI Shumin.Review of hazy image sharpening methods[J].CAAI Transactions on Intelligent Systems,2023,18():217.[doi:10.11992/tis.202110029]
[3]郑卓然,魏绎汶,贾修一.基于全局与局部感知网络的超高清图像去雾方法[J].智能系统学报,2024,19(1):89.[doi:10.11992/tis.202304013]
 ZHENG Zhuoran,WEI Yiwen,JIA Xiuyi.UHD image dehazing method based on global and local aware networks[J].CAAI Transactions on Intelligent Systems,2024,19():89.[doi:10.11992/tis.202304013]

备注/Memo

收稿日期:2023-5-5。
基金项目:河北省自然科学基金项目(F2021502013);河北省高等学校科学技术研究项目(QN2023181);中央高校基本科研业务费专项资金项目(2021MS094).
作者简介:王德文,副教授,主要研究方向为人工智能、图像处理。主持或参与国家自然科学基金项目 4 项,获河北省科技进步奖 3 项,以第一完成人获得国家专利授权 3 项,发表学术论文 50 余篇。E-mail:wdewen@gmail.com;陈威,硕士研究生,主要研究方向为人工智能、图像处理。E-mail:644691154@qq.com;苏攀,副教授,博士,主要研究方向为机器学习、模糊系统、图像处理。E-mail:supan@ncepu.edu.cn。
通讯作者:王德文. E-mail:wdewen@gmail.com

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com