[1]彭雨彤,梁凤梅.融合CNN和ViT的乳腺超声图像肿瘤分割方法[J].智能系统学报,2024,19(3):556-564.[doi:10.11992/tis.202304046]
 PENG Yutong,LIANG Fengmei.Tumor segmentation method for breast ultrasound images incorporating CNN and ViT[J].CAAI Transactions on Intelligent Systems,2024,19(3):556-564.[doi:10.11992/tis.202304046]
点击复制

融合CNN和ViT的乳腺超声图像肿瘤分割方法

参考文献/References:
[1] ZHENG Rongshou, ZHANG Siwei, ZENG Hongmei, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the national cancer center, 2022, 2(1): 1–9.
[2] 高艳多, 阎炯, 赵胜, 等. 1990—2019年中国女性乳腺癌发病和死亡趋势的年龄-时期-队列模型分析[J]. 中国预防医学杂志, 2022, 23(12): 909–916
GAO Yanduo, YAN Jiong, ZHAO Sheng, et al. Trends in incidence and mortality of female breast cancer in China from 1990 to 2019 using age-period-cohort analysis model[J]. Chinese preventive medicine, 2022, 23(12): 909–916
[3] XIAN Min, ZHANG Yingtao, CHENG H D, et al. Automatic breast ultrasound image segmentation: a survey[EB/OL]. (2017–04–04)[2023–04–24]. http://arxiv.org/abs/1704.01472.
[4] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16–31
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance segmentation research based on deep learning[J]. CAAI transactions on intelligent systems, 2022, 17(1): 16–31
[5] 施俊, 汪琳琳, 王珊珊, 等. 深度学习在医学影像中的应用综述[J]. 中国图象图形学报, 2020, 25(10): 1953–1981
SHI Jun, WANG Linlin, WANG Shanshan, et al. Applications of deep learning in medical imaging: a survey[J]. Journal of image and graphics, 2020, 25(10): 1953–1981
[6] 张宇, 梁凤梅, 刘建霞. 融合类激活映射和视野注意力的皮肤病变分割[J/OL]. 计算机工程与应用, 2022: 1–10. (2022–10–12) [2023–04–24]. https://kns.cnki.net/kcms/detail/11.2127.tp.20221011.1633.008.html.
ZHANG Yu, LIANG Fengmei, LIU Jianxia. Skin lesion segmentation based on classification activation mapping and visual field attention[J/OL]. Computer engineering and applications, 2022: 1–10. (2022–10–12) [2023–04–24]. https://kns.cnki.net/kcms/detail/11.2127.tp.20221011.1633.008.html.
[7] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234–241.
[8] ALMAJALID R, SHAN Juan, DU Yaodong, et al. Development of a deep-learning-based method for breast ultrasound image segmentation[C]//2018 17th IEEE International Conference on Machine Learning and Applications. Orlando: IEEE, 2018: 1103–1108.
[9] CHEN Gongping, DAI Yu, ZHANG Jianxun. RRCNet: refinement residual convolutional network for breast ultrasound images segmentation[J]. Engineering applications of artificial intelligence, 2023, 117: 105601.
[10] HE Qiqi, YANG Qiuju, XIE Minghao. HCTNet: a hybrid CNN-transformer network for breast ultrasound image segmentation[J]. Computers in biology and medicine, 2023, 155: 106629.
[11] ZHUANG Zhemin, LI Nan, JOSEPH RAJ A N, et al. An RDAU-NET model for lesion segmentation in breast ultrasound images[J]. PLoS One, 2019, 14(8): e0221535.
[12] D’ASCOLI S, TOUVRON H, LEAVITT M L, et al. ConViT: improving vision transformers with soft convolutional inductive biases[J]. Journal of statistical mechanics: theory and experiment, 2022, 2022(11): 114005.
[13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020–10–22) [2023–04–24]. http://arxiv.org/abs/2010.11929.
[14] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 36–46.
[15] CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. (2021–02–08)[2023–04–24]. http://arxiv.org/abs/2102.04306.
[16] ZHANG Yundong, LIU Huiye, HU Qiang. TransFuse: fusing transformers and CNNs for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference. Strasbourg: ACM, 2021: 14–24.
[17] HEIDARI M, KAZEROUNI A, SOLTANY M, et al. HiFormer: hierarchical multi-scale representations using transformers for medical image segmentation[C]//2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 6191–6201.
[18] AL-DHABYANI W, GOMAA M, KHALED H, et al. Dataset of breast ultrasound images[J]. Data in brief, 2020, 28: 104863.
[19] YAP M H, GOYAL M, OSMAN F, et al. Breast ultrasound region of interest detection and lesion localisation[J]. Artificial intelligence in medicine, 2020, 107: 101880.
[20] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764–773.
[21] LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical Vision Transformer using Shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992–10002.
[22] CHEN C F R, FAN Quanfu, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 347–356.
[23] BOKHOVKIN A, BURNAEV E. Boundary loss for remote sensing imagery semantic segmentation[C]//International Symposium on Neural Networks. Cham: Springer, 2019: 388–401.
[24] AZAD R, HEIDARI M, SHARIATNIA M, et al. TransDeepLab: convolution-free transformer-based DeepLab v3+ for medical image segmentation[C]//International Workshop on PRedictive Intelligence In MEdicine. Cham: Springer, 2022: 91–102.
[25] CAO Hu, WANG Yueyue, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[C]//Computer Vision – ECCV 2022 Workshops. Tel Aviv: ACM, 2022: 205–218.
[26] AZAD R, AL-ANTARY M T, HEIDARI M, et al. TransNorm: transformer provides a strong spatial normalization mechanism for a deep segmentation model[J]. IEEE access, 2022, 10: 108205–108215.
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2023-04-24。
基金项目:山西省重点研发计划项目(202102030201012).
作者简介:彭雨彤,硕士研究生,主要研究方向为医学图像处理。E-mail:pyt34567@163.com;梁凤梅,副教授,博士,主要研究方向为图像处理与传输、智能信息处理。主持完成省自然科学基金1项、省科技成果推广项目1项、省技术创新项目1项。获得山西省科技进步二等奖1项(第一完成人)、山西省科技进步三等奖2项。发表学术论文50余 篇。E-mail:fm_liang@163.com
通讯作者:梁凤梅. E-mail:fm_liang@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com