[1]张心祎,谭耀,邢向磊.基于物理先验的深度特征融合水下图像复原[J].智能系统学报,2023,18(6):1185-1196.[doi:10.11992/tis.202304038]
 ZHANG Xinyi,TAN Yao,XING Xianglei.Deep feature fusion for underwater-image restoration based on physical priors[J].CAAI Transactions on Intelligent Systems,2023,18(6):1185-1196.[doi:10.11992/tis.202304038]
点击复制

基于物理先验的深度特征融合水下图像复原

参考文献/References:
[1] IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method[C]//2010 IEEE International Conference on Systems, Man and Cybernetics. Istanbul: IEEE, 2010: 1703-1709.
[2] ABDUL GHANI A S, MAT ISA N A. Underwater image quality enhancement through integrated color model with Rayleigh distribution[J]. Applied soft computing, 2015, 27: 219–230.
[3] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE transactions on image processing, 2017, 27(1): 379–393.
[4] ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 81-88.
[5] GALDRAN A, PARDO D, PICóN A, et al. Automatic red-channel underwater image restoration[J]. Journal of visual communication and image representation, 2015, 26: 132–145.
[6] DREWS P L J J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE computer graphics and applications, 2016, 36(2): 24–35.
[7] LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE transactions on image processing, 2016, 25(12): 5664–5677.
[8] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 9992-10002.
[9] LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976.
[10] LI Jie, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE robotics and automation letters, 2018, 3(1): 387–394.
[11] 李微, 毕晓君. 改进U-Net网络的水下图像增强[J]. 应用科技, 2021, 48(3): 34–40
LI Wei, BI Xiaojun. Underwater image enhancement based on improved U-Net model[J]. Applied science and technology, 2021, 48(3): 34–40
[12] LI Chongyi, GUO Jichang, GUO Chunle. Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE signal processing letters, 2018, 25(3): 323–327.
[13] PENG Y T, CAO Keming, COSMAN P C. Generalization of the dark channel prior for single image restoration[J]. IEEE transactions on image processing, 2018, 27(6): 2856–2868.
[14] JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE journal of oceanic engineering, 1990, 15(2): 101–111.
[15] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[16] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2): 295–307.
[17] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[18] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8107-8116.
[19] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2004, 13(4): 600–612.
[20] KARRAS T, AILA T LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2017-10-27)[2023-04-18]. https://arxiv.org/abs/1710.10196.
[21] ARORA S, COHEN N, HAZAN E. On the optimization of deep networks: implicit acceleration by overparameterization[EB/OL]. (2018-02-19) [2023-04-18]. https://arxiv.org/abs/1802.06509.
[22] JUSTIN J, ALEXANDRE A, LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision–ECCV 2016. Amsterdam: Springer International Publishing, 2016: 694-711.
[23] LI Chongyi, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern recognition, 2020, 98: 107038.
[24] UPLAVIKAR P, WU Zhenyu, WANG Zhangyang. All-in-one underwater image enhancement using domain-adversarial learning[EB/OL]. (2019-05-30) [2023-04-18]. https://arxiv.org/abs/1905.13342.
[25] HAN Junlin, SHOEIBY M, MALTHUS T, et al. Underwater image restoration via contrastive learning and a real-world dataset[J]. Remote sensing, 2022, 14(17): 4297.
[26] JERLOV N G. Marine optics[M]. [S. l. ]: Elsevier, 1976.
[27] NATHAN S, DEREK H, PUSHMEET K, et al. Indoor segmentation and support inference from RGBD images[C]//Computer Vision-ECCV 2012. Florence: Springer International Publishing, 2012: 746–760.
[28] LI Chongyi, GUO Jichang, CHEN Sanji, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging[C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 1993-1997.
[29] PENG Yantsung, PAMELA C C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE transactions on image processing, 2017, 26(4): 1579–1594.
[30] QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. BASNet: boundary-aware salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 7471-7481.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2023-4-18。
基金项目:国家自然科学基金项目(62076078,61703119).
作者简介:张心祎,硕士研究生,主要研究方向为深度学习与水下图像增强。;谭耀,硕士研究生,主要研究方向为深度学习与水下图像增强。;邢向磊,教授,博士生导师,主要研究方向为计算机视觉,模式识别与机器学习。以第一完成人获黑龙江省高等学校科学技术奖(自然科学类)一等奖,《智能系统学报》优秀论文奖。
通讯作者:邢向磊.E-mail:xingxl@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com