[1]潘悦悦,吴立飞,杨晓忠.一种多策略改进鲸鱼优化算法的混沌系统参数辨识[J].智能系统学报,2024,19(1):176-189.[doi:10.11992/tis.202303043]
 PAN Yueyue,WU Lifei,YANG Xiaozhong.Parameter identification of chaotic system based on a multi-strategy improved whale optimization algorithm[J].CAAI Transactions on Intelligent Systems,2024,19(1):176-189.[doi:10.11992/tis.202303043]
点击复制

一种多策略改进鲸鱼优化算法的混沌系统参数辨识

参考文献/References:
[1] 张昊, 王兴元. 复杂混沌系统同步及其应用[M]. 北京: 科学出版社, 2021.
[2] 郭荣伟. 混沌系统的控制问题研究及其应用[M]. 北京: 科学出版社, 2020.
[3] DING Zhenghao, LU Zhongrong, LIU Jike. Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy[J]. Science China technological sciences, 2018, 61(3): 417–426.
[4] 尚荣华, 焦李成, 刘芳,等. 智能算法导论[M]. 北京: 清华大学出版社, 2021.
[5] CHEN Yang, PI Dechang, WANG Bi. Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system[J]. Nonlinear dynamics, 2019, 97(2): 1343–1358.
[6] AHANDANI M A, KHARRATI H. A corporate shuffled complex evolution for parameter identification[J]. Artificial intelligence review, 2020, 53(4): 2933–2956.
[7] TURGUT M S, SA?BAN H M, TURGUT O E, et al. Whale optimization and sine-cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models[J]. Soft computing, 2021, 25(2): 1365–1409.
[8] EBRAHIMI S M, MALEKZADEH M, ALIZADEH M, et al. Parameter identification of nonlinear system using an improved Lozi map based chaotic optimization algorithm (ILCOA)[J]. Evolving systems, 2021, 12(2): 255–272.
[9] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51–67.
[10] 包子阳, 余继周, 杨杉. 智能优化算法及其MATLAB实例[M]. 3版. 北京: 电子工业出版社, 2021.
[11] 李士勇, 李研, 林永茂. 智能优化算法与涌现计算[M]. 2版. 北京: 清华大学出版社, 2022.
[12] CHEN Hui, LI Weide, YANG Xuan. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems[J]. Expert systems with applications, 2020, 158: 113612.
[13] CHEN Huiling, YANG Chenjun, HEIDARI A A, et al. An efficient double adaptive random spare reinforced whale optimization algorithm[J]. Expert systems with applications, 2020, 154: 113018.
[14] CHAKRABORTY S, SAHA A K, CHAKRABORTY R, et al. An enhanced whale optimization algorithm for large scale optimization problems[J]. Knowledge-based systems, 2021, 233: 107543.
[15] SHEN Ya, ZHANG Chen, GHAREHCHOPOGH F S, et al. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems[J]. Expert systems with applications, 2023, 215: 119269.
[16] DENG Huaijun, LIU Linna, FANG Jianyin, et al. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm[J]. Mathematics and computers in simulation, 2023, 205: 794–817.
[17] YAN Aijun, GUO Jingcheng, WANG Dianhui. Robust stochastic configuration networks for industrial data modelling with Student’s-t mixture distribution[J]. Information sciences, 2022, 607: 493–505.
[18] AN Yining, WANG Jianzhou, LU Haiyan, et al. Research of a combined wind speed model based on multi-objective ant lion optimization algorithm[J]. International transactions on electrical energy systems, 2021, 31(12): e13189.
[19] ZHANG Liping, ZHU Yue, REN Wei, et al. An energy-efficient authentication scheme based on Chebyshev chaotic map for smart grid environments[J]. IEEE Internet of things journal, 2021, 8(23): 17120–17130.
[20] 黄元春, 张凌波. 改进的鲸鱼优化算法及其应用[J]. 计算机工程与应用, 2019, 55(21): 220–226,270
HUANG Yuanchun, ZHANG Lingbo. Improved whale optimization algorithm and its application[J]. Computer engineering and applications, 2019, 55(21): 220–226,270
[21] 陈强, 王宇嘉, 梁海娜, 等. 目标空间映射策略的高维多目标粒子群优化算法[J]. 智能系统学报, 2021, 16(2): 362–370
CHEN Qiang, WANG Yujia, LIANG Haina, et al. Multi-objective particle swarm optimization algorithm based on an objective space papping strategy[J]. CAAI transactions on intelligent systems, 2021, 16(2): 362–370
[22] ZHOU Xinyu, WU Yanlin, ZHONG Maosheng, et al. Artificial bee colony algorithm based on adaptive neighborhood topologies[J]. Information sciences, 2022, 610: 1078–1101.
[23] WANG Erlei, XIA Jiangying, LI Jia, et al. Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm[J]. Energy, 2022, 261: 125146.
[24] 贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104–116
JIA Heming, LIU Qingxin, LIU Yuxiang, et al. Hybrid Aquila and Harris Hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI transactions on intelligent systems, 2023, 18(1): 104–116
[25] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2023, 49(11): 2360–2373
LIU Chenghan, HE Qing. Golden sine chimp optimization algorithm integrating multiple strategies[J]. Acta automatica sinica, 2023, 49(11): 2360–2373
[26] LIU Hongwei, HE Ping, LI Guodong, et al. Multi-directional annular multi-wing chaotic system based on Julia fractals[J]. Chaos, solitons & fractals, 2022, 165: 112799.

备注/Memo

收稿日期:2023-03-30。
基金项目:中央高校基本科研业务费专项基金项目(2021MS045);华北电力大学国内外联合培养博士生资助项目(2020).
作者简介:潘悦悦,博士研究生,主要研究方向为智能优化算法。E-mail:panyueyue@ncepu.edu.cn;吴立飞,高级工程师,博士,主要研究方向为系统辨识、过程控制。主持教育部中央高校基本科研业务费专项基金2项。发表学术论文30 余篇。E-mail:wulf@ncepu.edu.cn;杨晓忠,教授,博士生导师,主要研究方向为智能优化算法、人工智能。主持国家科技重大专项子课题3项、国家自然科学基金面上项目2项。发表学术论文100 余篇。E-mail:yxiaozh@ncepu.edu.cn
通讯作者:杨晓忠. E-mail:yxiaozh@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com