[1]吕佳,邱小龙.基于K-means聚类和特征空间增强的噪声标签深度学习算法[J].智能系统学报,2024,19(2):267-277.[doi:10.11992/tis.202303014]
 LYU Jia,QIU Xiaolong.A noisy label deep learning algorithm based on K-means clustering and feature space augmentation[J].CAAI Transactions on Intelligent Systems,2024,19(2):267-277.[doi:10.11992/tis.202303014]
点击复制

基于K-means聚类和特征空间增强的噪声标签深度学习算法

参考文献/References:
[1] ZHANG Jing, WU Xindong, SHENG V S. Learning from crowdsourced labeled data: a survey[J]. Artificial intelligence review, 2016, 46(4): 543–576.
[2] 伏博毅, 彭云聪, 蓝鑫, 等. 基于深度学习的标签噪声学习算法综述[J]. 计算机应用, 2023, 43(3): 674–684
FU Boyi, PENG Yuncong, LAN Xin, et al. Survey of label noise learning algorithms based on deep learning[J]. Journal of computer applications, 2023, 43(3): 674–684
[3] HAN Bo, YAO Quanming, YU Xingrui, et al. Co-teaching: robust training of deep neural networks with extremely noisy labels[C]//Advances in Neural Information Processing Systems. Montreal: NIPS, 2018: 1602-1613.
[4] YU Xingrui, HAN Bo, YAO Jiangchao, et al. How does disagreement help generalization against label corruption [EB/OL]. (2019-01-14)[2022-12-25]. https://arxiv.org/abs/1901.04215.pdf.
[5] WEI Hongxin, FENG Lei, CHEN Xiangyu, et al. Combating noisy labels by agreement: a joint training method with co-regularization[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2020: 13723-13732.
[6] LI Junnan, SOCHER R, HOI S C H. DivideMix: learning with noisy labels as semi-supervised learning[EB/OL]. (2020-02-18)[2022-12-25]. https://arxiv.org/abs/2002.07394.pdf.
[7] CORDEIRO F R, SACHDEVA R, BELAGIANNIS V, et al. LongReMix: robust learning with high confidence samples in a noisy label environment[J]. Pattern recognition, 2023, 133(1): 565–581.
[8] KARIM N, KHALID U, ESMAEILI A, et al. CNLL: a semi-supervised approach for continual noisy label learning[C]//2022 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 3877-3887.
[9] ZAHEER M Z, LEE Jinha, ASTRID M, et al. Cleaning label noise with clusters for minimally supervised anomaly detection[EB/OL]. (2021-04-30)[2022-12-25]. https://arxiv.org/abs/2104.14770.pdf.
[10] CHENG Hao, ZHU Zhaowei, LI Xingyu, et al. Learning with instance-dependent label noise: a sample sieve appro-ach[EB/OL]. (2020-10-05)[2022-12-25]. https://arxiv.org/abs/2010.02347.pdf.
[11] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27)[2022-12-25]. https://arxiv.org/abs/1710.09412.pdf.
[12] LI Boyi, WU F, LIM S N, et al. On feature normalization and data augmentation[C]//2021 IEEE Conference on Computer Vision and Pattern Recognition. Kuala Lumpur: IEEE, 2021: 12378-12387.
[13] BERTHELOT D, RAFFEL C, ROY A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[EB/OL]. (2018-07-23)[2022-12-.25]. https://arxiv.org/abs/1807.07543.pdf.
[14] SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[C]//Advances in Neural Information Processing Systems. Addis Ababa: NIPS, 2020: 596-608.
[15] LIU Defu, ZHAO Jiayi, WU Jinzhao, et al. Multi-category classification with label noise by robust binary loss[J]. Neurocomputing, 2022, 482(16): 14–26.
[16] WU Songhua, XIA Xiaobo, LIU Tongliang, et al. Class2Simi: a noise reduction perspective on learning with noisy labels[C]//International Conference on Machine Learning. London: ACM, 2021: 11285-11295.
[17] SHARMA N, JAIN V, MISHRA A. An analysis of convolutional neural networks for image classification[J]. Procedia computer science, 2018, 132(9): 377–384.
[18] DENG L. The mnist database of handwritten digit images for machine learning research[J]. IEEE signal processing magazine, 2012, 29(6): 141–142.
[19] TAN C, XIA J, WU L, et al. Co-learning: Learning from noisy labels with self-supervision[C]//Proceedings of the 29th ACM International Conference on Multimedia. Chengdu: ACM, 2021: 1405-1413.
[20] PATRINI G, ROZZA A, MENON A K, et al. Making deep neural networks robust to label noise: a loss correction approach[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2233-2241.
[21] ZHANG Z, SABUNCU M. Generalized cross entropy loss fortraining deep neural networks with noisy labels[C]//Avances in Neural Information Processing Systems. Montreal: NIPS, 2018: 11400-11411.
[22] ARAZO E, ORTEGO D, ALBERT P, et al. Unsupervised label noise modeling and loss correction[C]//International Conference on Machine Learning. Los Angeles: ACM, 2019: 312-321.
[23] WANG Zhuowei, JIANG Jing, HAN Bo, et al. SemiNLL: a framework of noisy-label learning by semi-supervised learning[EB/OL]. (2020-11-02)[2022-12-27]. https://arxiv.org/abs/2012.00925.pdf.
[24] ZHOU Xiong, LIU Xianming, WANG Chenyang, et al. Learning with noisy labels via sparse regularization[C]//2021 IEEE International Conference on Computer Vision. Montreal: IEEE, 2022: 72-81.
[25] FENG Lei, SHU Senlin, LIN Zhuoyi, et al. Can cross entropy loss be robust to label noise[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: ACM, 2020: 2206-2212.
[26] YI Li, LIU Sheng, SHE Qi, et al. On learning contrastive representations for learning with noisy labels[C]//2022 IEEE Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 16661-16670.
[27] MENON A K, RAWAT A S, REDDI S J, et al. Can gradient clipping mitigate label noise[C]//International Conference on Learning Representations. Addis Ababa: ACM, 2020: 6204-6231.
[28] SONG H, KIM M, LEE J G. Selfie: Refurbishing unclean samples for robust deep learning[C]//International Conference on Machine Learning, Los Angeles: ACM, 2019: 5907-5915.
[29] ZHANG Yikai, ZHENG Songzhu, WU Pengxiang, et al. Learning with feature dependent label noise: a progressiv-e approach[EB/OL]. (2021-05-27)[2022-12-25]. https://ar-xiv.org/abs/2103.07756.pdf.
[30] CHEN Yingyi, SHEN Xi, HU S X, et al. Boosting co-teaching with compression regularization for label noise[C]//2021 IEEE Conference on Computer Vision and Pattern Recognition Kuala Lumpur, IEEE, 2021: 2682-2686.
[31] RIPPEL O, GELBART M, ADAMS R. Learning ordered representations with nested dropout[C]//International Conference on Machine Learning. Beijing: ACM, 2014: 1746-1754.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2023-03-07。
基金项目:国家自然科学基金重大项目(11991024);重庆市教委“成渝地区双城经济圈建设”科技创新项目(KJCX2020024);重庆市高校创新研究群体资助项目(CXQT20015);重庆市教委科研项目重点项目(KJZD-K202200511).
作者简介:吕佳,教授,博士,主要研究方向为机器学习、数据挖掘,中国计算机学会会员。主持或参与的国家级、省部级科研项目20项,发表学术论文70余篇。E-mail:lvjia@cqnu.edu.cn;邱小龙,硕士研究生,主要研究方向为机器学习、数据挖掘、噪声标签学习算法。E-mail:2021210516067@stu.cqnu.edu.cn
通讯作者:吕佳. E-mail: lvjia@cqnu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com