[1]康博,钱艺,文益民.基于抽象关系场景图的图像情感识别[J].智能系统学报,2024,19(2):335-343.[doi:10.11992/tis.202303009]
KANG Bo,QIAN Yi,WEN Yimin.Image sentiment recognition based on the abstract relational scene graph network[J].CAAI Transactions on Intelligent Systems,2024,19(2):335-343.[doi:10.11992/tis.202303009]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第2期
页码:
335-343
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-03-05
- Title:
-
Image sentiment recognition based on the abstract relational scene graph network
- 作者:
-
康博, 钱艺, 文益民
-
桂林电子科技大学 广西图像图形与智能处理重点实验室, 广西 桂林 541004
- Author(s):
-
KANG Bo, QIAN Yi, WEN Yimin
-
Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin 541004, China
-
- 关键词:
-
图像情感识别; 抽象关系; 场景图; 图卷积网络; 注意力机制; 卷积神经网络; 视觉情感分析; 深度学习
- Keywords:
-
image sentiment recognition; abstract relationship; scene graph; graph convolutional network; attention mechanism; convolutional neural network; visual sentiment analysis; deep learning
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202303009
- 文献标志码:
-
2023-11-20
- 摘要:
-
图像情感识别是通过分析视觉刺激来预测人类情感的抽象过程。现有方法大多缺乏对对象间关系以及对象与场景间相互作用的关注,并且对象间复杂多样的关系难以得到充分利用,进而导致难以正确对图像情感进行预测。为解决上述问题,提出一种基于抽象关系场景图的图像情感识别方法。首先,构建对象和属性检测器来提取图像中对象及其属性的特征。其次,使用对象特征推理对象间的亲密度和抽象关系特征,进而构建抽象关系场景图。再次,提出抽象关系图卷积网络来推理抽象关系场景图。最后,设计渐进式注意力机制对多个对象特征进行融合,以得到图像的整体对象特征。在FI、EmotionRoI和Twitter I公开数据集上的试验结果表明,该方法的分类准确率优于现有方法。
- Abstract:
-
Image sentiment recognition is an abstract process of forecasting human emotions by analysis of various visual stimuli. Most of the earlier literature does not focus on the relationships among objects and the interactions between objects and scenes, and the complex and diverse relationships among objects are difficult to fully exploit, resulting in difficulty in correctly forecasting image sentiment. To deal with this problem, we develop an abstract relational scene graph network for image sentiment recognition. First, an object and attribute detector is generated to extract object features and their corresponding attribute features from images. Second, the affinities and abstract relationship features among objects are inferred through object features, and then the abstract relational scene graph is generated. Moreover, an abstract relational graph convolutional network is developed for reasoning the abstract relational scene graph. Last, a progressive attention mechanism is designed to fuse multiple object features to acquire the overall object feature of the image. Application on three public datasets, FI, EmotionRoI, and Twitter I, demonstrates that the classification accuracy of the proposed method is better than that of the existing methods.
备注/Memo
收稿日期:2023-03-04。
基金项目:国家自然科学基金项目(62366011);广西重点研发计划项目(桂科AB21220023);广西图像图形与智能处理重点实验室项目(GIIP 2306)
作者简介:康博,硕士研究生,主要研究方向为计算机视觉和视觉情感分析。E-mail:1981480003@qq.com;钱艺,博士研究生,主要研究方向为计算机视觉与零样本学习。E-mail:qyizos@163.com;文益民,教授,博士生导师,博士,中国计算机学会 杰出会员,主要研究方向为机器学习、推荐系统和大数据分析。主持国家自然科学基金项目3项,发表学术论文50余篇。E-mail:ymwen@guet.edu.cn
通讯作者:文益民. E-mail:ymwen@guet.edu.cn
更新日期/Last Update:
1900-01-01