[1]邢天祎,郭茂祖,陈加栋,等.基于空时对抗变分自编码器的人群异常行为检测[J].智能系统学报,2023,18(5):994-1004.[doi:10.11992/tis.202303002]
 XING Tianyi,GUO Maozu,CHEN Jiadong,et al.Detection of abnormal crowd behavior based on spatial-temporal adversarial variational autoencoder[J].CAAI Transactions on Intelligent Systems,2023,18(5):994-1004.[doi:10.11992/tis.202303002]
点击复制

基于空时对抗变分自编码器的人群异常行为检测

参考文献/References:
[1] LI Weixin, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(1): 18-32.
[2] XIE Shaoci, ZHANG Xiaohong, CAI Jing. Video crowd detection and abnormal behavior model detection based on machine learning method[J]. Neural computing and applications, 2019, 31(1): 175-184.
[3] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 733?742.
[4] CHONG Y S, TAY Y H. Abnormal event detection in videos using spatiotemporal autoencoder[C]//CONG F, LEUNG A, WEI Q. International Symposium on Neural Networks. Cham: Springer, 2017: 189?196.
[5] LUO Weixin, LIU Wen, GAO Shenghua. Remembering history with convolutional LSTM for anomaly detection[C]//2017 IEEE International Conference on Multimedia and Expo. Hong Kong: IEEE, 2017: 439?444.
[6] 杨彪, 曹金梦, 张御宇, 等. 加权卷积自编码长短期记忆网络人群异常检测方法: CN108805015B[P]. 2021-09-03.
YANG Biao, CAO Jinmeng, ZHANG Yuyu, et al. Weighted convolutional autoencoder-long short-term memory network-based crowd anomaly detection method: CN108805015B[P]. 2021-09-03.
[7] YAN Shiyang, SMITH J S, LU Wenjin, et al. Abnormal event detection from videos using a two-stream recurrent variational autoencoder[J]. IEEE transactions on cognitive and developmental systems, 2020, 12(1): 30-42.
[8] LIU Jie, SONG Kechen, FENG Mingzheng, et al. Semi-supervised anomaly detection with dual prototypes autoencoder for industrial surface inspection[J]. Optics and lasers in engineering, 2021, 136: 106324.
[9] LIU Wen, LUO Weixin, LIAN Dongze, et al. Future frame prediction for anomaly detection-A new baseline[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6536?6545.
[10] DONG Fei, ZHANG Yu, NIE Xiushan. Dual discriminator generative adversarial network for video anomaly detection[J]. IEEE access, 2020, 8: 88170-88176.
[11] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 1273?1283.
[12] MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[EB/OL]. (2015-11-18)[2020-01-01]. https://arxiv.org/abs/1511.05644.
[13] 唐浩漾, 张小媛, 王燕, 等. 基于生成对抗网络的人体异常行为检测算法[J]. 西安邮电大学学报, 2020, 25(3): 92-97
TANG Haoyang, ZHANG Xiaoyan, WANG Yan, et al. Human abnormal behaviour detection algorithm based on generative adversarial nets[J]. Journal of Xi’an University of Posts and Telecommunications, 2020, 25(3): 92-97
[14] LI Nanjun, CHANG Faliang, LIU Chunsheng. Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes[J]. IEEE transactions on multimedia, 2021, 23: 203-215.
[15] 张冀, 曹艺, 王亚茹, 等. 融合VAE和StackGAN的零样本图像分类方法[J]. 智能系统学报, 2022, 17(3): 593-601
ZHANG Ji, CAO Yi, WANG Yaru, et al. Zero-shot image classification method combining VAE and StackGAN[J]. CAAI transactions on intelligent systems, 2022, 17(3): 593-601
[16] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14360?14369.
[17] MARKOVITZ A, SHARIR G, FRIEDMAN I, et al. Graph embedded pose clustering for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10536?10544.
[18] GOYAL S, RAGHUNATHAN A, JAIN M, et al. DROCC: Deep robust one-class classification[C]//International Conference on Machine Learning. [S.l.]: PMLR, 2020: 3711?3721.
[19] LI Chunliang, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9659?9669.
[20] RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Fully convolutional cross-scale-flows for image-based defect detection[EB/OL]. (2021-10-06)[2022-12-01]. https://arxiv.org/abs/2110.02855.
[21] CARRARA F, AMATO G, BROMBIN L, et al. Combining GANs and AutoEncoders for efficient anomaly detection[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 3939?3946.
[22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[23] UMN. University of minnesota dataset for detection of unusual crowd activity[EB/OL]. (2006-05-30)[2020-01-01]. http://mha.cs.umn.edu/proj_events.shtml#crowd.
[24] WANG Lin, ZHOU Fuqiang, LI Zuoxin, et al. Abnormal event detection in videos using hybrid spatio-temporal autoencoder[C]// 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 2276?2280.
[25] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special lecture on IE, 2015, 2(1): 1-18.
[26] DAI Feng, LIU Hao, MA Yike, et al. Dense scale network for crowd counting[EB/OL]. (2019-06-24)[2020-01-01]. https://arxiv.org/abs/1906.09707.
相似文献/References:
[1]王德文,魏波涛.基于孪生变分自编码器的小样本图像分类方法[J].智能系统学报,2021,16(2):254.[doi:10.11992/tis.201906022]
 WANG Dewen,WEI Botao.A small-sample image classification method based on a Siamese variational auto-encoder[J].CAAI Transactions on Intelligent Systems,2021,16():254.[doi:10.11992/tis.201906022]
[2]张冀,曹艺,王亚茹,等.融合VAE和StackGAN的零样本图像分类方法[J].智能系统学报,2022,17(3):593.[doi:10.11992/tis.202107012]
 ZHANG Ji,CAO Yi,WANG Yaru,et al.Zero-shot image classification method combining VAE and StackGAN[J].CAAI Transactions on Intelligent Systems,2022,17():593.[doi:10.11992/tis.202107012]

备注/Memo

收稿日期:2023-3-1。
基金项目:国家自然科学基金项目(62271036,61871020);国家重点研发计划项目(2021YFF0306303);北京市属高校高水平创新团队建设计划项目(IDHT20190506).
作者简介:邢天祎,硕士研究生,主要研究方向为模式识别与智能系统;郭茂祖,教授,博士生导师,博士,中国人工智能学会机器学习专委会常委、中国建筑学会计算性设计学术委员会常委,主要研究方向为机器学习、智慧城市、计算生物学。北京建筑大学电气与信息工程学院院长,2019 年以第一完成人获吴文俊人工智能自然 科学奖二等奖。发表学术论文100余篇。;赵玲玲,副教授,博士,中国计算机学会生物信息学专委会委员、中国建筑学会计算性设计专委会委员,主要研究方向为机器学习、城市计算、生物信息学。主持和参与国家自然科学基金青年基金、面上项目、重点项目8 项。发表学术论文40 余篇
通讯作者:赵玲玲.E-mail:Zhaoll@hit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com