[1]张凯,刘月,覃正楚,等.迁移表征的知识追踪模型[J].智能系统学报,2024,19(4):974-982.[doi:10.11992/tis.202302002]
 ZHANG Kai,LIU Yue,QIN Zhengchu,et al.Knowledge tracing model via exercise transfer representation[J].CAAI Transactions on Intelligent Systems,2024,19(4):974-982.[doi:10.11992/tis.202302002]
点击复制

迁移表征的知识追踪模型

参考文献/References:
[1] LIU Qi, SHEN Shuanghong, HUANG Zhenya, et al. A survey of knowledge tracing[EB/OL]. (2021-05-06)[2023-01-05]. https://ar5iv.org/abs/2105.15106.pdf.
[2] 刘铁园, 陈威, 常亮, 等. 基于深度学习的知识追踪研究进展[J]. 计算机研究与发展, 2022, 59(1): 81–104
LIU Tieyuan, CHEN Wei, CHANG Liang, et al. Research progress in knowledge tracking based on deep learning[J]. Computer research and development, 2022, 59(1): 81–104
[3] RABINER L, JUANG B. An introduction to hidden Markov models[J]. IEEE ASSP magazine, 1986, 3(1): 4–16.
[4] CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User modeling and user-adapted interaction, 1994, 4(4): 253–278.
[5] 黄诗雯, 刘朝晖, 罗凌云, 等. 融合行为和遗忘因素的贝叶斯知识追踪模型研究[J]. 计算机应用研究, 2021, 38(7): 1993–1997
HUANG Shiwen, LIU Zhaohui, LUO Lingyun, et al. Research on Bayesian knowledge tracing model integrating behavior and forgetting factors[J]. Computer application research, 2021, 38(7): 1993–1997
[6] PIECH C, BASSEN J, HUANG J. Deep knowledge tracing[J]. Advances in neural information processing systems, 2015, 28: 19–23.
[7] ZHANG Jiani, SHI Xingjian, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 765-774.
[8] 李浩君, 卢佳琪, 吴嘉铭. 融合学习过程特征的深度知识追踪方法[J]. 浙江工业大学学报, 2022, 50(3): 245–252
LI Haojun, LU Jiaqi, WU Jiaming, et al. In-depth knowledge tracing method integrating learning process characteristics[J]. Journal of Zhejiang University of Technology, 2022, 50(3): 245–252
[9] 宗晓萍, 陶泽泽. 基于掌握速度的知识追踪模型[J]. 计算机工程与应用, 2021, 57(6): 117–123
ZONG Xiaoping, TAO Zeze. Knowledge tracing model based on mastery speed[J]. Computer engineering and application, 2021, 57(6): 117–123
[10] 李浩君, 高鹏. 融合梯度提升回归树的深度知识追踪优化模型[J]. 系统科学与数学, 2021, 41(8): 2101–2112
LI Haojun, GAO Peng. Deep knowledge tracing optimization model integrated with gradient boosting regression tree[J]. Systems science and mathematics, 2021, 41(8): 2101–2112
[11] SUN Xia, ZHAO Xu, MA Yuna, et al. Muti-behavior features based knowledge tracking using decision tree improved DKVMN[C]//Proceedings of the ACM Turing Celebration Conference. Chengdu: ACM, 2019: 1-6.
[12] 姚梅林. 学习迁移研究的新进展[J]. 北京师范大学学报(社会科学版), 1994(5): 99–104
YAO Meilin. New progress in learning transfer research[J]. Journal of Beijing Normal University (social science edition), 1994(5): 99–104
[13] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014-09-08)[2023-01-06]. https://ar5iv.org/abs/1409.2329.pdf.
[14] 刘坤佳, 李欣奕, 唐九阳, 等. 可解释深度知识追踪模型[J]. 计算机研究与发展, 2021, 58(12): 2618–2629
LIU KunJia, LI Xinyi, TANG Jiuyang, et al. Interpretable deep knowledge tracing model[J]. Computer research and development, 2021, 58(12): 2618–2629
[15] YANG Yang, SHEN Jian, QU Yanru, et al. GIKT: a graph-based interaction model for knowledge tracing[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2020: 299-315.
[16] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[J]. Advances in neural information processing systems, 2016, 29: 3844–3852.
[17] LIU Yunfei, YANG Yang, CHEN Xianyu, et al. Improving knowledge tracing via pre-training question embeddings[EB/OL]. (2020-12-09)[2023-01-05]. https://ar5iv.org/abs/2012.05031.pdf.
[18] 马骁睿, 徐圆, 朱群雄. 一种结合深度知识追踪的个性化习题推荐方法[J]. 小型微型计算机系统, 2020, 41(5): 990–995
MA Xiaorui, XU Yuan, ZHU Qunxiong. A personalized exercise recommendation method combined with deep knowledge tracing[J]. Small microcomputer system, 2020, 41(5): 990–995
[19] 邵小萌, 张猛. 融合注意力机制的时间卷积知识追踪模型[J]. 计算机应用, 2023, 43(2): 343–348
SHAO Xiaomeng, ZHANG Meng. Temporal convolutional knowledge tracing model with attention mechanism[J]. Journal of computer applications, 2023, 43(2): 343–348
[20] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-03-04)[2023-01-06]. https://ar5iv.org/abs/1803.01271.pdf.
[21] GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 2330-2339.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 5998–6008.
[23] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//The World Wide Web Conference. New York: IW3C2, 2019: 3101-3107.
[24] 李晓光, 魏思齐, 张昕, 等. LFKT: 学习与遗忘融合的深度知识追踪模型[J]. 软件学报, 2021, 32(3): 818–830
LI Xiaoguang, WEI Siqi, ZHANG Xin, et al. LFKT: deep knowledge tracing model with learning and forgetting behavior merging[J]. Journal of software, 2021, 32(3): 818–830
[25] 王璨, 刘朝晖, 王蓓, 等. TCN-KT: 个人基础与遗忘融合的时间卷积知识追踪模型[J]. 计算机应用研究, 2022, 39(5): 1496–1500
WANG Can, LIU Zhaohui, WANG Bei, et al. TCN-KT: time convolutional knowledge tracing model for fusion of personal basis and forgetting[J]. Computer application research, 2022, 39(5): 1496–1500
[26] PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1205-1214.
[27] GAN W, SUN Y, PENG X, et al. Modeling learner’s dynamic knowledge construction procedure and cognitive item difficulty for knowledge tracing[J]. Applied intelligence, 2020, 50: 3894–3912.
[28] SCHMIDHUBER J, HOCHREITER S. Long short-term memory[J]. Neural comput, 1997, 9(8): 1735–1780.
[29] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2014-09-01)[2023-01-05]. https://ar5iv.org/abs/1409.0473.pdf.
[30] SU Yu, LIU Qingwen, LIU Qi, et al. Exercise-enhanced sequential modeling for student performance prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 2435-2443.
[31] FENG M, HEFFERNAN N, KOEDINGER K. Addressing the assessment challenge with an online system that tutors as it assesses[J]. User modeling and user-adapted interaction, 2009, 19: 243–266.
[32] KOEDINGER K R, BAKER R S J, CUNNINGHAM K, et al. A data repository for the EDM community: the PSLC datashop[J]. Handbook of educational data mining, 2010, 43: 43–56.
[33] CHOI Y, LEE Y, SHIN D, et al. Ednet: a large-scale hierarchical dataset in education[C]//21st International Conference on Artificial Intelligence in Education. Cham: Springer, 2020: 69-73.
相似文献/References:
[1]陈恩红,刘淇,王士进,等.面向智能教育的自适应学习关键技术与应用[J].智能系统学报,2021,16(5):886.[doi:10.11992/tis.202105036]
 CHEN Enhong,LIU Qi,WANG Shijin,et al.Key techniques and application of intelligent education oriented adaptive learning[J].CAAI Transactions on Intelligent Systems,2021,16():886.[doi:10.11992/tis.202105036]

备注/Memo

收稿日期:2023-02-02。
基金项目:国家自然科学基金项目(62077018);国家科技部高端外国人才引进计划项目(G2022027006L);湖北省自然科学基金项目(2022CFB132):湖北省教育厅科学研究计划项目(B2022038);2023年湖北本科高校省级教学改革研究项目(2023273).
作者简介:张凯,教授,博士,主要研究方向为图神经网络、贝叶斯深度学习、知识追踪、知识图谱,湖北省科技厅入库专家。主持或参与完成国家、省部级科研项目15项,发表学术论文20余篇。E-mail:kai.zhang@yangtzeu.edu.cn;刘月,硕士研究生,主要研究方向为深度学习、知识追踪。E-mail:2021710577@yangtzeu.edu.cn;覃正楚,硕士研究生,主要研究方向为深度学习、知识追踪。E-mail:2021710632@yangtzeu.edu.cn
通讯作者:张凯. E-mail:kai.zhang@yangtzeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com