[1]梁艳,温兴,潘家辉.融合全局与局部特征的跨数据集表情识别方法[J].智能系统学报,2023,18(6):1205-1212.[doi:10.11992/tis.202212030]
LIANG Yan,WEN Xing,PAN Jiahui.Cross-dataset facial expression recognition method fusing global and local features[J].CAAI Transactions on Intelligent Systems,2023,18(6):1205-1212.[doi:10.11992/tis.202212030]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第6期
页码:
1205-1212
栏目:
学术论文—机器感知与模式识别
出版日期:
2023-11-05
- Title:
-
Cross-dataset facial expression recognition method fusing global and local features
- 作者:
-
梁艳, 温兴, 潘家辉
-
华南师范大学 软件学院, 广东 佛山 528225
- Author(s):
-
LIANG Yan, WEN Xing, PAN Jiahui
-
School of Software, South China Normal University, Foshan 528225, China
-
- 关键词:
-
跨数据集; 人脸表情识别; 领域自适应; 特征融合; 自注意力机制; 迁移学习; 细粒度域鉴别器; 残差网络
- Keywords:
-
cross-dataset; facial expression recognition; domain adaptation; feature fusion; self-attention mechanism; transfer learning; fine-grained domain discriminator; residual network
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202212030
- 摘要:
-
人脸表情数据集在收集过程中存在主观的标注差异和客观的条件差异,导致表情识别模型在不同数据集间呈现明显的性能差异。为了提高跨数据集表情识别精度、减少表情识别在实际应用中进行样本打标重训练的过程,本文提出了一种基于表情融合特征的域对抗网络模型,用于跨数据集人脸表情识别。采用残差神经网络提取人脸表情的全局特征与局部特征。利用Encoder模块对全局特征与局部特征进行融合,学习更深层次的表情信息。使用细粒度的域鉴别器进行源数据集与目标数据集对抗,对齐数据集的边缘分布和条件分布,使模型能迁移到无标签的目标数据集中。以RAF-DB为源数据集,以CK+、JAFFE、SFEW2.0、FER2013、Expw分别作为目标数据集进行跨数据集人脸表情识别实验。与其他跨数据集人脸表情识别算法相比,所提方法获得了最高的平均识别率。实验结果表明,所提方法能有效提高跨数据集人脸表情识别的性能。
- Abstract:
-
The expression recognition model shows significant performance differences between datasets due to subjective annotation and objective condition differences in the collection of facial expression datasets. A domain adversarial network model based on expression fusion features is proposed for cross-dataset facial expression recognition. This model aims to improve the accuracy of cross-dataset expression recognition and reduce the sample marking and retraining processes for expression recognition in practical applications. Residual neural networks are used to extract the global and local features of facial expressions. An encoder module is then employed to fuse global and local features to learn deep expression information. A fine-grained domain discriminator is adopted to antagonize the source dataset against the target dataset, aligning the edge and conditional distributions of the dataset and facilitating the migration of the model to the unlabeled target dataset. RAF-DB is used as the source dataset, and CK+, JAFFE, SFEW2.0, FER2013, and Expw are used as the target datasets for cross-dataset facial expression recognition experiments. Compared with other cross-dataset facial expression recognition algorithms, the proposed method achieves the highest average recognition rate. Experimental results show that the proposed method can effectively improve the performance of cross-dataset facial expression recognition.
备注/Memo
收稿日期:2022-12-29。
基金项目:国家科技创新2030重点项目(2022ZD0208900);国家自然科学基金项目(62076103).
作者简介:梁艳,讲师,博士,主要研究方向为计算机视觉、模式识别与智能系统等。发表学术论文20余篇;温兴,硕士研究生,主要研究方向为深度学习、计算机视觉、迁移学习;潘家辉,教授,博士,中国人工智能学会脑机融合与生物机器智能专业委员会委员,主要研究方向为模式识别与智能系统、脑机交互。主持3项国家自然科学基金项目,2项广东省自然科学基金项目,发表学术论文60余篇
通讯作者:梁艳.E-mail:liangyan@m.scnu.edu.cn
更新日期/Last Update:
1900-01-01