[1]李霞丽,王昭琦,刘博,等.麻将博弈AI构建方法综述[J].智能系统学报,2023,18(6):1143-1155.[doi:10.11992/tis.202211028]
LI Xiali,WANG Zhaoqi,LIU Bo,et al.Survey of Mahjong game AI construction methods[J].CAAI Transactions on Intelligent Systems,2023,18(6):1143-1155.[doi:10.11992/tis.202211028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第6期
页码:
1143-1155
栏目:
综述
出版日期:
2023-11-05
- Title:
-
Survey of Mahjong game AI construction methods
- 作者:
-
李霞丽1,2, 王昭琦1,2, 刘博1,2, 吴立成1,2
-
1. 中央民族大学 信息工程学院, 北京 100081;
2. 中央民族大学 民族语言智能分析与安全治理教育部重点实验室, 北京 100081
- Author(s):
-
LI Xiali1,2, WANG Zhaoqi1,2, LIU Bo1,2, WU Licheng1,2
-
1. School of Information Engineering, Minzu University of China, Beijing 100081, China;
2. Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China
-
- 关键词:
-
机器博弈; 非完备信息博弈; 麻将; Suphx; 知识; 对手建模; 深度学习; 强化学习
- Keywords:
-
computer games; imperfect information game; Mahjong; Suphx; knowledge; opponent modeling; deep learning; reinforcement learning
- 分类号:
-
TP39
- DOI:
-
10.11992/tis.202211028
- 摘要:
-
麻将及其不同变体的规则复杂,构建高水平的麻将博弈AI (artificial intelligence)算法及其测试环境等面临巨大挑战。本文分析了麻将博弈的相关研究文献,梳理出基于知识和基于数据的两大类麻将AI构建方法,分析了每种类型的构建方法的优势和局限性,重点分析了Suphx构建方法。指出了麻将AI构建面临的问题和挑战;提出将经验回放、分层强化学习、好奇心模型、对手模型、元学习、迁移学习、课程学习等应用到麻将博弈AI算法优化中,构建多元化的麻将AI评估指标、通用对抗平台和高质量的数据集等未来的研究重点。
- Abstract:
-
Mahjong and its different variants have complex rules. Therefore, building a high-level Mahjong game artificial intelligence (AI) algorithm and its test environment is challenging. Through the analysis of relevant research literature on Mahjong game, this paper identified two types of Mahjong AI construction methods based on knowledge and data. Moreover, the advantages and disadvantages of each typical method are analyzed, emphasizing the construction method of Suphx. The problems and challenges encountered in constructing Mahjong AI are identified, suggesting the need to apply experience replay, hierarchical reinforcement learning, curiosity model, opponent model, metalearning, transfer learning, and curriculum learning to the AI algorithm optimization of Mahjong game and construct diversified Mahjong AI evaluation indicators, general confrontation platforms, and high-quality data sets. These problems are all promising research directions for the future.
备注/Memo
收稿日期:2022-11-18。
基金项目:国家自然科学基金项目(61873291,62276285).
作者简介:李霞丽,教授,主要研究方向为计算机博弈;王昭琦,硕士研究生,主要研究方向为计算机博弈;吴立成,教授,中国人工智能学会机器博弈专委会副主任,主要研究方向为智能系统及机器人、计算机博弈。主持国家自然科学基金等项目10余项,发表学术论文80余篇。
通讯作者:吴立成.E-mail:wulicheng@tsinghua.edu.cn
更新日期/Last Update:
1900-01-01