[1]张静宇,续欣莹,谢刚,等.基于弹性权重巩固与知识蒸馏的垃圾持续分类[J].智能系统学报,2023,18(4):878-885.[doi:10.11992/tis.202211023]
 ZHANG Jingyu,XU Xinying,XIE Gang,et al.Continuous classification of garbage based on the elastic weightconsolidation and knowledge distillation[J].CAAI Transactions on Intelligent Systems,2023,18(4):878-885.[doi:10.11992/tis.202211023]
点击复制

基于弹性权重巩固与知识蒸馏的垃圾持续分类

参考文献/References:
[1] TONG Yeqing, LIU Jiafa, LIU Sizhe. China is implementing “Garbage Classification” action[J]. Environmental pollution, 2020, 259: 113707.
[2] 李金玉, 陈晓雷, 张爱华, 等. 基于深度学习的垃圾分类方法综述[J]. 计算机工程, 2022, 48(2): 1–9
LI Jinyu, CHEN Xiaolei, ZHANG Aihua, et al. Survey of garbage classification methods based on deep learning[J]. Computer engineering, 2022, 48(2): 1–9
[3] KANG Zhuang, YANG Jie, LI Guilan, et al. An automatic garbage classification system based on deep learning[J]. IEEE access, 2020, 8: 140019–140029.
[4] 张涛. 基于GAICNet的垃圾识别分类检测网络[J]. 智能计算机与应用, 2022, 12(4): 47–53
ZHANG Tao. Garbage identification classification and detection method based on GAICNet[J]. Intelligent computer and applications, 2022, 12(4): 47–53
[5] 许玉蕊, 刘银华, 高鑫. 基于特征融合卷积神经网络的垃圾分类[J]. 自动化与仪表, 2021, 36(9): 11–16
XU Yurui, LIU Yinhua, GAO Xin. Garbage classification based on feature fusion convolutional neural network[J]. Automation & instrumentation, 2021, 36(9): 11–16
[6] 杨旺功, 赵一飞. 注意力机制与双线性网络的垃圾图像分类研究[J]. 计算机仿真, 2021, 38(12): 222–226
YANG Wanggong, ZHAO Yifei. Research on garbage image classification based on attention mechanism and bilinear network[J]. Computer simulation, 2021, 38(12): 222–226
[7] ZENG Ming, LU Xiangzhe, XU Wenkang, et al. PublicGarbageNet: a deep learning framework for public garbage classification[C]// 39th Chinese Control Conference. Piscataway: IEEE, 2020: 7200-7205.
[8] MENG Sha, ZHANG Ning, REN Yunwen. X-DenseNet: deep learning for garbage classification based on visual images[J]. Journal of physics:conference series, 2020, 1575(1): 012139.
[9] SHI Cuiping, XIA Ruiyang, WANG Liguo. A novel multi-branch channel expansion network for garbage image classification[J]. IEEE access, 2020, 8: 154436–154452.
[10] BIRCANO?LU C, ATAY M, BE?ER F, et al. RecycleNet: intelligent waste sorting using deep neural networks[C]//2018 Innovations in Intelligent Systems and Applications. Piscataway: IEEE, 2018: 1?7.
[11] MAO Weilung, CHEN Weichun, WANG Chien, et al. Recycling waste classification using optimized convolutional neural network[J]. Resources, conservation and recycling, 2021, 164: 105132.
[12] YANG Jianfei, ZENG Zhaoyang, WANG Kai, et al. GarbageNet: a unified learning framework for robust garbage classification[J]. IEEE transactions on artificial intelligence, 2021, 2(4): 372–380.
[13] DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: defying forgetting in classification tasks[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(7): 3366–3385.
[14] REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5533?5542.
[15] SHIN H, LEE J K, KIM J, et al. Continual learning with deep generative replay[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 2994?3003.
[16] LOPEZ-PAZ D, RANZATO M. Gradient episodic memory for continual learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6470?6479.
[17] CHAUDHRY A, RANZATO M, ROHRBACH M, et al. Efficient lifelong learning with A-GEM[EB/OL]. (2018?12?02)[2022?11?16]. https://arxiv.org/abs/1812.00420
[18] MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7765?7773.
[19] FERNANDO C, BANARSE D, BLUNDELL C, et al. PathNet: evolution channels gradient descent in super neural networks[EB/OL]. (2017?01?30)[2022?11?16].https://arxiv.org/abs/1701.08734
[20] ALJUNDI R, CHAKRAVARTY P, TUYTELAARS T. Expert gate: lifelong learning with a network of experts[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7120-7129.
[21] KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(13): 3521–3526.
[22] LIU Xialei, MASANA M, HERRANZ L, et al. Rotate your networks: better weight consolidation and less catastrophic forgetting[C]//2018 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 2262-2268.
[23] LEE S W, KIM J H, JUN J, et al. Overcoming catastrophic forgetting by incremental moment matching[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4655?4665.
[24] LI Zhizhong, HOIEM D. Learning without forgetting[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(12): 2935–2947.
[25] RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]//2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1329?1337.
[26] CHAUDHRY A, DOKANIA P K, AJANTHAN T, et al. Riemannian walk for incremental learning: understanding forgetting and intransigence[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 556?572.
[27] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015?03?09)[2022?11?16]. https://arxiv.org/abs/1503.02531.
[28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90.
[29] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261?2269.
[30] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770?778.
[31] YAN Xin. Garbagenet: a large-scale garbage dataset for image classification[EB/OL]. (2023?01?20)[2023?03?10]. https://git.openi.org.cn/Garbage sorting/GarbageNet.
相似文献/References:
[1]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(2):65.[doi:CNKI:SUN:ZNXT.0.2008-02-017]
[2]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(2):155.
 LI Hai-feng,DU Jun-ping.Image classification technology based on color features[J].CAAI Transactions on Intelligent Systems,2008,3():155.
[3]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(5):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6():396.
[4]尤雅萍,成运,苏松志,等.基于谱域-空域结合特征和图割原理的高光谱图像分类[J].智能系统学报,2015,10(2):201.[doi:10.3969/j.issn.1673-4785.201410040]
 YOU Yaping,CHENG Yun,SU Songzhi,et al.Hyperspectral image classification based on spectral-spatial combination features and graph cut[J].CAAI Transactions on Intelligent Systems,2015,10():201.[doi:10.3969/j.issn.1673-4785.201410040]
[5]赵骞,李敏,赵晓杰,等.基于感受野学习的特征词袋模型简化算法[J].智能系统学报,2016,11(5):663.[doi:10.11992/tis.201601001]
 ZHAO Qian,LI Min,ZHAO Xiaojie,et al.Learning receptive fields for compact bag-of-feature model[J].CAAI Transactions on Intelligent Systems,2016,11():663.[doi:10.11992/tis.201601001]
[6]费宇杰,吴小俊.一种局部聚合描述符和组显著编码相结合的编码方法[J].智能系统学报,2017,12(2):172.[doi:10.11992/tis.201602010]
 FEI Yujie,WU Xiaojun.A new feature coding algorithm based on the combination of group salient coding and VLAD[J].CAAI Transactions on Intelligent Systems,2017,12():172.[doi:10.11992/tis.201602010]
[7]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[8]马忠丽,刘权勇,武凌羽,等.一种基于联合表示的图像分类方法[J].智能系统学报,2018,13(2):220.[doi:10.11992/tis.201611036]
 MA Zhongli,LIU Quanyong,WU Lingyu,et al.Syncretic representation method for image classification[J].CAAI Transactions on Intelligent Systems,2018,13():220.[doi:10.11992/tis.201611036]
[9]魏彩锋,孙永聪,曾宪华.图正则化字典对学习的轻度认知功能障碍预测[J].智能系统学报,2019,14(2):369.[doi:10.11992/tis.201709033]
 WEI Caifeng,SUN Yongcong,ZENG Xianhua.Dictionary pair learning with graph regularization for mild cognitive impairment prediction[J].CAAI Transactions on Intelligent Systems,2019,14():369.[doi:10.11992/tis.201709033]
[10]赵玉新,赵廷.海底声呐图像智能底质分类技术研究综述[J].智能系统学报,2020,15(3):587.[doi:10.11992/tis.202004026]
 ZHAO Yuxin,ZHAO Ting.Survey of the intelligent seabed sediment classification technology based on sonar images[J].CAAI Transactions on Intelligent Systems,2020,15():587.[doi:10.11992/tis.202004026]

备注/Memo

收稿日期:2022-11-16。
基金项目:山西省回国留学人员科研项目(2021-046);山西省自然科学基金项目(202103021224056);山西省科技合作交流专项(202104041101030).
作者简介:张静宇,硕士研究生,主要研究方向为深度学习和图像处理;续欣莹,教授,美国圣荷西州立大学访问学者,中国人工智能学会科普工作委员会常务委员、认知系统与信息处理专委会委员,主要研究方向为人工智能、视觉感知与智能控制。主持国家级、省部级和企业等重要项目20余项,发表学术论文80余篇;刘华平,教授,博士生导师,国家级人才,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会副主任,国家杰出青年科学基金获得者,主要研究方向为机器人感知、学习与控制,获吴文俊科技进步一等奖。主持国家自然科学基金重点 项目 2 项,发表学术论文 300 余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com