[1]王卓然,文家燕,谢广明,等.基于改进CBS算法的多智能体路径规划[J].智能系统学报,2023,18(6):1336-1343.[doi:10.11992/tis.202211006]
 WANG Zhuoran,WEN Jiayan,XIE Guangming,et al.Multi-agent path planning based on improved CBS algorithm[J].CAAI Transactions on Intelligent Systems,2023,18(6):1336-1343.[doi:10.11992/tis.202211006]
点击复制

基于改进CBS算法的多智能体路径规划

参考文献/References:
[1] 刘庆周, 吴锋. 多智能体路径规划研究进展[J]. 计算机工程, 2020, 46(4): 1–10
LIU Qingzhou, WU Feng. Research progress of multi-agent path planning[J]. Computer engineering, 2020, 46(4): 1–10
[2] 张飞, 白伟, 乔耀华, 等. 基于改进D*算法的无人机室内路径规划[J]. 智能系统学报, 2019, 14(4): 662–669
ZHANG Fei, BAI Wei, QIAO Yaohua, et al. UAV indoor path planning based on improved D* algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(4): 662–669
[3] LI J, TINKA A, KIESEL S, et al. Lifelong multi-agent path finding in large-scale warehouses[C]//Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems. Auckland: International Foundation for Autonomous Agents and Multiagent Systems, 2020: 1898-1900.
[4] ZHANG Zheng, GUO Qing, CHEN Juan, et al. Collision-free route planning for multiple AGVs in an automated warehouse based on collision classification[J]. IEEE access, 2018, 6: 26022–26035.
[5] MA Hang, YANG Jingxing, COHEN L, et al. Feasibility study: moving non-homogeneous teams in congested video game environments[C]//Proceedings of the 13th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Arizona: AAAI Press, 2017, 13(1): 270-272.
[6] MOHANTY S, NYGREN E, LAURENT F, et al. Flatland-RL: multi-agent reinforcement learning on trains[EB/OL]. (2020-10-10)[2022-11-10]. https://arxiv.org/abs/2012.05893.pdf.
[7] CHOUDHURY S, SOLOVEY K, KOCHENDERFER M, et al. Coordinated multi-agent pathfinding for drones and trucks over road networks[C]//Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. New Zealand: International Foundation for Autonomous Agents and Multiagent Systems, 2022: 272-280.
[8] CARTUCHO J, VENTURA R, VELOSO M. Robust object recognition through symbiotic deep learning in mobile robots[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2019: 2336-2341.
[9] SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial intelligence, 2015, 219: 40–66.
[10] BOYARSKI E, FELNER A, STERN R, et al. ICBS: Improved conflict-based search algorithm for multi-agent pathfinding[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015: 740-746.
[11] FELNER A, LI Jiaoyang, BOYARSKI E, et al. Adding heuristics to conflict-based search for multi-agent path finding[C]//Proceedings of the 28th International Conference on Automated Planning and Scheduling. California: AAAI Press, 2018, 28: 83-87.
[12] LI Jiaoyang, GANGE G, HARABOR D, et al. New techniques for pairwise symmetry breaking in multi-agent path finding[C]//Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling. Nancy: AAAI Press, 2020, 30: 193-201.
[13] LI Jiaoyang, HARABOR D, STUCKEY P J, et al. Disjoint splitting for multi-agent path finding with conflict-based search[C]//Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling. California: AAAI Press, 2021, 29: 279-283.
[14] BOYARSKI E, FELNER A, LE BODIC P, et al. Further improved heuristics for conflict-based search[C]//Proceedings of the Fourteenth International Symposium on Combinatorial Search. Guangzhou: AAAI Press, 2021, 12(1): 213-215.
[15] BOYARSKI E, FELNER A, LE BODIC P, et al. Faware conflict prioritization & improved heuristics for conflict-based search[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver: AAAI Press, 2021, 35(14): 12241-12248.
[16] RAHMAN M, ALAM M A, ISLAM M M, et al. An adaptive agent-specific sub-optimal bounding approach for multi-agent path finding[J]. IEEE access, 2022, 10: 22226–22237.
[17] BOYARSKI E, FELNER A, HARABOR D, et al. Iterative-deepening conflict-based search[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: International Joint Conferences on Artificial Intelligence Organization, 2020: 4084-4090.
[18] LI Jiaoyang, RUML W, KOENIG S. EECBS: a bounded-suboptimal search for multi-agent path finding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Virtual: AAAI Press, 2021, 35(14): 12353-12362.
[19] HUANG Taoan, KOENIG S, DILKINA B. Learning to resolve conflicts for multi-agent path finding with conflict-based search[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Virtual: AAAI Press, 2021, 35(13): 11246-11253.
[20] BURGES C, SHAKED T, RENSHAW E, et al. Learning to rank using gradient descent[C]//Proceedings of the 22nd international conference on Machine learning. New York: ACM, 2005: 89-96.
[21] STERN R, STURTEVANT N, FELNER A, et al. Multi-agent pathfinding: definitions, variants, and benchmarks[C]//Proceedings of the international symposium on combinatorial search. California: AAAI Press, 2021, 10(1): 151-158.
[22] SILVER D. Cooperative pathfinding[C]//Proceedings of the First AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. California: AAAI Press, 2021, 1(1): 117-122.
[23] SHARON G, STERN R, GOLDENBERG M, et al. The increasing cost tree search for optimal multi-agent pathfinding[J]. Artificial intelligence, 2013, 195: 470–495.
[24] LI Jiaoyang, FELNER A, BOYARSKI E, et al. Improved heuristics for multi-agent path finding with conflict-based search[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 442-449.
[25] BOYRASKY E, FELNER A, SHARON G, et al. Don’t split, try to work it out: bypassing conflicts in multi-agent pathfinding[C]//Proceedings of the international conference on automated planning and scheduling. Prague: PKP, 2015, 25: 47-51.
相似文献/References:
[1]谭树彬,刘建昌.Multi-Agent的连续轧制过程控制系统研究[J].智能系统学报,2008,3(2):150.
 TAN Shu-bin,LIU Jian-chang.Research On multiAgent based control system for continuous rolling process[J].CAAI Transactions on Intelligent Systems,2008,3():150.
[2]雷明,周超,周绍磊,等.考虑时变时滞的多移动智能体分布式编队控制[J].智能系统学报,2012,7(6):536.
 LEI Ming,ZHOU Chao,ZHOU Shaolei,et al.Decentralized formation control of multiple mobile agents considering timevarying delay[J].CAAI Transactions on Intelligent Systems,2012,7():536.
[3]郭文强,高晓光,侯勇严,等.采用MSBN多智能体协同推理的智能农业车辆环境识别[J].智能系统学报,2013,8(5):453.[doi:10.3969/j.issn.1673-4785.201210057]
 GUO Wenqiang,GAO Xiaoguang,HOU Yongyan,et al.Environment recognition of intelligent agricultural vehicles based on MSBN and multi-agent coordinative inference[J].CAAI Transactions on Intelligent Systems,2013,8():453.[doi:10.3969/j.issn.1673-4785.201210057]
[4]张文旭,马磊,王晓东.基于事件驱动的多智能体强化学习研究[J].智能系统学报,2017,12(1):82.[doi:10.11992/tis.201604008]
 ZHANG Wenxu,MA Lei,WANG Xiaodong.Reinforcement learning for event-triggered multi-agent systems[J].CAAI Transactions on Intelligent Systems,2017,12():82.[doi:10.11992/tis.201604008]
[5]徐鹏,谢广明,文家燕,等.事件驱动的强化学习多智能体编队控制[J].智能系统学报,2019,14(1):93.[doi:10.11992/tis.201807010]
 XU Peng,XIE Guangming,WEN Jiayan,et al.Event-triggered reinforcement learning formation control for multi-agent[J].CAAI Transactions on Intelligent Systems,2019,14():93.[doi:10.11992/tis.201807010]
[6]成怡,肖宏图.融合改进A*算法和Morphin算法的移动机器人动态路径规划[J].智能系统学报,2020,15(3):546.[doi:10.11992/tis.201812023]
 CHENG Yi,XIAO Hongtu.Mobile-robot dynamic path planning based on improved A* and Morphin algorithms[J].CAAI Transactions on Intelligent Systems,2020,15():546.[doi:10.11992/tis.201812023]
[7]殷昌盛,杨若鹏,朱巍,等.多智能体分层强化学习综述[J].智能系统学报,2020,15(4):646.[doi:10.11992/tis.201909027]
 YIN Changsheng,YANG Ruopeng,ZHU Wei,et al.A survey on multi-agent hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():646.[doi:10.11992/tis.201909027]
[8]赵玉新,杜登辉,成小会,等.基于强化学习的海洋移动观测网络观测路径规划方法[J].智能系统学报,2022,17(1):192.[doi:10.11992/tis.202106004]
 ZHAO Yuxin,DU Denghui,CHENG Xiaohui,et al.Path planning for mobile ocean observation network based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2022,17():192.[doi:10.11992/tis.202106004]
[9]陆升阳,赵怀林,刘华平.场景图谱驱动目标搜索的多智能体强化学习[J].智能系统学报,2023,18(1):207.[doi:10.11992/tis.202111034]
 LU Shengyang,ZHAO Huailin,LIU Huaping.Multi-agent reinforcement learning for scene graph-driven target search[J].CAAI Transactions on Intelligent Systems,2023,18():207.[doi:10.11992/tis.202111034]
[10]蒲兴成,张玲侠.基于合作?竞争关系马尔可夫切换下异质多智能体系统均方二分组一致研究[J].智能系统学报,2023,18(4):803.[doi:10.11992/tis.202201045]
 PU Xingcheng,ZHANG Lingxia.Mean square couple-group consensus for heterogeneous multiagent systems based on Markov switching and cooperative-competitive relation[J].CAAI Transactions on Intelligent Systems,2023,18():803.[doi:10.11992/tis.202201045]

备注/Memo

收稿日期:2022-11-7。
基金项目:国家自然科学基金项目(61963006);广西自然科学基金面上项目(2018GXNSFAA050029);广西科技重大专项(桂科AA22068064);2022年广西汽车零部件与整车技术重点实验室自主研究课题(2022GKLACVTZZ01).
作者简介:王卓然,硕士研究生,主要研究方向为多智能体路径规划;文家燕,教授,博士,中国自动化学会青年工作委员会委员,广西自动化学会理事。主要研究方向为多智能体系统协同控制、多机器人编队控制。现主持国家自然科学基金及省部级基金项目5项,获专利授权8项,发表学术论文2余篇;谢广明,教授,博士生导师,中国自动学会机器人竞赛工作委员会副主任,国际水中机器人联盟创始人,中国仿真学会机器人系统仿真专委会主任委员,主要研究方向为复杂系统动力学与控制、智能仿生机器人多机器人系统与控制。现主持国家自然科学基金重点项目等 8 项,获发明专利授权20 余项。曾荣获国家自然科学奖二等奖、教育部自然科学奖一等奖、吴文俊人工智能科学技术奖创新奖二等奖,发表学术论文 200 余篇
通讯作者:文家燕.E-mail:wenjiayan2012@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com