[1]何宇豪,易明发,周先存,等.基于改进的Yolov5的无人机图像小目标检测[J].智能系统学报,2024,19(3):635-645.[doi:10.11992/tis.202210032]
HE Yuhao,YI Mingfa,ZHOU Xiancun,et al.UAV image small-target detection based on improved Yolov5[J].CAAI Transactions on Intelligent Systems,2024,19(3):635-645.[doi:10.11992/tis.202210032]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第3期
页码:
635-645
栏目:
学术论文—机器人
出版日期:
2024-05-05
- Title:
-
UAV image small-target detection based on improved Yolov5
- 作者:
-
何宇豪1, 易明发1, 周先存2, 王冠凌1
-
1. 安徽工程大学 电气工程学院, 安徽 芜湖 241000;
2. 皖西学院 电子与信息工程学院, 安徽 六安 237012
- Author(s):
-
HE Yuhao1, YI Mingfa1, ZHOU Xiancun2, WANG Guanling1
-
1. College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
2. The Department of Electronic and Information Engineering, West Anhui University, Lu’an 237012, China
-
- 关键词:
-
图像处理; GhostConv卷积模块; 双向特征金字塔网络; 卷积块注意力模块; Soft双向特征金字塔网络; 轻量化模型; 小目标检测; VisDrone数据集
- Keywords:
-
image processing; GhostConv convolution module; bidirectional feature pyramid network; convolutional block attention module; soft bidirectional feature pyramid network; lightweight model; small-target detection; VisDrone dataset
- 分类号:
-
TP391.4;V19
- DOI:
-
10.11992/tis.202210032
- 文献标志码:
-
2023-12-04
- 摘要:
-
为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采用GhostConv卷积模块、GhostBottleneckC3模块替换部分Conv模块和C3模块用以提取丰富特征和冗余特征以提高模型效率;引入加权双向特征金字塔网络(bidirectional feature pyramid network, BiFPN)结构,用以提高对小目标的检测精度;在主干网络和颈部网络中引入轻量化的卷积块注意力模块(convolutional block attention module, CBAM),关注重要特征并抑制不必要的特征,增强小目标特征表达能力;使用Soft-NMS算法来替换NMS,因此降低了小目标在密集场景下的漏检率。通过在VisDrone2019数据集上的实验结果表明,集成了所有改进的方法后的Yolov5_GBCS算法,不仅提高了检测精度,而且有效地提高了检测速度,模型的mAP从38.5%提高到43.2%,检测速度也从53 f/s提高到59 f/s。Yolov5_GBCS算法可以有效地实现无人机航拍图像中小目标识别。
- Abstract:
-
The detection speed and accuracy of small targets captured by UAV aerial photography cannot be considered at the same time. To address this problem, a new algorithm based on the Yolov5 algorithm, namely Yolov5_GBCS, is proposed for small-target detection of UAV-captured images. In the new algorithm, an additional detector head is added to enhance the feature fusion effect of small targets. In the backbone network, the GhostConv convolution module and GhostBottleneckC3 module are used to replace some original Conv modules and C3 modules for extracting rich and redundant features, respectively, to improve the model efficiency. The weighted bidirectional feature pyramid network structure is introduced to enhance the detection accuracy of small targets. The lightweight convolutional block attention module is introduced into the backbone and neck networks to focus on important features and suppress unnecessary features to boost the ability of small-target feature expression. The Soft-NMS algorithm is used to replace the NMS for reducing the miss detection rate of small targets in dense scenes. Experimental results on the VisDrone 2019 dataset show that the Yolov5_GBCS algorithm integrating all improved methods enhances the detection accuracy and effectively improves the detection speed. The mAP of the subject model has been increased from 38.5% to 43.2%, and the detection speed from 53 f/s to 59 f/s. Therefore, the Yolov5_GBCS algorithm can effectively recognize small targets in the image captured by UAV aerial photography.
备注/Memo
收稿日期:2022-10-25。
基金项目:国家自然科学基金项目(61572366);安徽高校自然科学研究重大项目(J2021ZD0116);皖江高端装备制造协同创新中心开放基金项目(GCKJ2018013).
作者简介:何宇豪,硕士研究生,主要研究方向为目标检测。E-mail:1772307157@qq.com;易明发,硕士研究生,主要研究方向为目标检测。E-mail:1781987848@qq.com;王冠凌,教授,主要研究方向为嵌入式开发。主持省教育厅科研重点项目1项,获省科技进步奖一等奖1项,获发明专利授权4项,发表学术论文20余篇。E-mail:ahpu_405@163.com
通讯作者:王冠凌. E-mail:ahpu_405@163.com
更新日期/Last Update:
1900-01-01