[1]何宇豪,易明发,周先存,等.基于改进的Yolov5的无人机图像小目标检测[J].智能系统学报,2024,19(3):635-645.[doi:10.11992/tis.202210032]
 HE Yuhao,YI Mingfa,ZHOU Xiancun,et al.UAV image small-target detection based on improved Yolov5[J].CAAI Transactions on Intelligent Systems,2024,19(3):635-645.[doi:10.11992/tis.202210032]
点击复制

基于改进的Yolov5的无人机图像小目标检测

参考文献/References:
[1] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697–1722
CAO Jiale, LI Yali, SUN Hanqing, et al. A survey on deep learning based visual object detection[J]. Journal of image and graphics, 2022, 27(6): 1697–1722
[2] LIU Chuanyang, WU Yiquan, LIU Jingjing, et al. MTI-YOLO: a light-weight and real-time deep neural network for insulator detection in complex aerial images[J]. Energies, 2021, 14(5): 1426.
[3] SAHIN O, OZER S. YOLODrone: improved YOLO architecture for object detection in drone images[C]//2021 44th International Conference on Telecommunications and Signal Processing. Brno: IEEE, 2021: 361–365.
[4] WANG Xuewen, ZHAO Qingzhan, JIANG Ping, et al. LDS-YOLO: A lightweight small object detection method for dead trees from shelter forest[J]. Computers and electronics in agriculture, 2022, 198: 107035.
[5] 彭继慎, 孙礼鑫, 王凯, 等. 基于模型压缩的ED-YOLO电力巡检无人机避障目标检测算法[J]. 仪器仪表学报, 2021, 42(10): 161–170
PENG Jishen, SUN Lixin, WANG Kai, et al. ED-YOLO power inspection UAV obstacle avoidance target detectionalgorithm based on model compression[J]. Chinese journal of scientific instrument, 2021, 42(10): 161–170
[6] 陈蕊, 郑华飞, 蒋鸿宇, 等. 结合仿真迁移学习和自适应融合的无人机小目标检测[J/OL]. 小型微型计算机系统, 2022: 1–10. (2022–05–10). https://kns.cnki.net/kcms/detail/21.1106.TP.20220509.1930.032.html.
CHEN Rui, ZHENG Huafei, JIANG Hongyu, et al. Combination of simulation-based transfer learning and adaptive fusion for UAV small object detection[J/OL]. Journal of Chinese computer systems, 2022: 1–10. (2022–05–10). https://kns.cnki.net/kcms/detail/21.1106.TP.20220509.1930.032.html.
[7] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3–19.
[8] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5562–5570.
[9] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
[10] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759–8768.
[11] KRISHNA K, NARASIMHA MURTY M. Genetic K-means algorithm[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 1999, 29(3): 433–439.
[12] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
[13] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568–6577.
[14] WANG Haotong, LIU Bailin, LIU Zhiping, et al. LSS target threat estimation and capture prediction trajectory simulation[C]//2020 7th International Conference on Information Science and Control Engineering. Changsha: IEEE, 2020: 806–813.
[15] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
[16] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626–9635.
[17] LI Yanghao, CHEN Yuntao, WANG Naiyan, et al. Scale-aware trident networks for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6053–6062.
[18] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[19] ZHU Chenchen, HE Yihui, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 840–849.
[20] ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756–9765.
[21] FENG Chengjian, ZHONG Yujie, GAO Yu, et al. TOOD: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3490–3499.
[22] AHMED A, TANGRI P, PANDA A, et al. VFNet: a convolutional architecture for accent classification[C]//2019 IEEE 16th India Council International Conference. Rajkot: IEEE, 2019: 1–4.
相似文献/References:
[1]李庆武,蔡艳梅,徐立中.基于分块分类的智能视频监控背景更新算法[J].智能系统学报,2010,5(3):272.
 LI Qing-wu,CAI Yan-mei,XU Li-zhong.Background update algorithm based on blocks classification forintelligent video surveillance[J].CAAI Transactions on Intelligent Systems,2010,5():272.
[2]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报,2012,7(2):102.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,7():102.
[3]王锦榕,袁学海,刘增良.基于图像处理技术的瞳孔和角膜反射中心提取算法[J].智能系统学报,2012,7(5):423.
 WANG Jinrong,YUAN Xuehai,LIU Zengliang.An extraction method of pupil and corneal reflection centers based on image processing technology[J].CAAI Transactions on Intelligent Systems,2012,7():423.
[4]傅博,姜勇,王洪光,等.输电线路巡检图像智能诊断系统[J].智能系统学报,2016,11(1):70.[doi:10.11992/tis.201503043]
 FU Bo,JIANG Yong,WANG Hongguang,et al.Intelligent diagnosis system for patrol check images of power transmission lines[J].CAAI Transactions on Intelligent Systems,2016,11():70.[doi:10.11992/tis.201503043]
[5]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11():241.[doi:10.11992/tis.201509017]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11():608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12():279.[doi:10.11992/tis.201606037]
[8]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(5):729.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12():729.[doi:10.11992/tis.201706018]
[9]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[10]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14():186.[doi:10.11992/tis.201805002]

备注/Memo

收稿日期:2022-10-25。
基金项目:国家自然科学基金项目(61572366);安徽高校自然科学研究重大项目(J2021ZD0116);皖江高端装备制造协同创新中心开放基金项目(GCKJ2018013).
作者简介:何宇豪,硕士研究生,主要研究方向为目标检测。E-mail:1772307157@qq.com;易明发,硕士研究生,主要研究方向为目标检测。E-mail:1781987848@qq.com;王冠凌,教授,主要研究方向为嵌入式开发。主持省教育厅科研重点项目1项,获省科技进步奖一等奖1项,获发明专利授权4项,发表学术论文20余篇。E-mail:ahpu_405@163.com
通讯作者:王冠凌. E-mail:ahpu_405@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com