[1]刘爽,陈璟.结合卷积和轴注意力的光流估计网络[J].智能系统学报,2024,19(3):575-583.[doi:10.11992/tis.202210029]
LIU Shuang,CHEN Jing.Optical flow estimation network combining convolution and axial attention[J].CAAI Transactions on Intelligent Systems,2024,19(3):575-583.[doi:10.11992/tis.202210029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第3期
页码:
575-583
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-05-05
- Title:
-
Optical flow estimation network combining convolution and axial attention
- 作者:
-
刘爽1, 陈璟1,2
-
1. 江南大学 人工智能与计算机学院, 江苏 无锡 214122;
2. 江南大学 江苏省模式识别与计算智能工程实验室, 江苏 无锡 214122
- Author(s):
-
LIU Shuang1, CHEN Jing1,2
-
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;
2. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computing Intelligence, Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
光流估计; 迭代次数; 卷积神经网络; 轴注意力机制; 门控循环单元网络; 深度学习; 时间优化; 边缘计算平台
- Keywords:
-
optical flow estimation; iterations; convolutional neural networks; axial attention mechanism; gated recurrent unit network; deep learning; time optimization; edge computing platform
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202210029
- 文献标志码:
-
2023-09-15
- 摘要:
-
现有的光流估计网络为了获得更高的精度,往往使用相关性成本量和门控循环单元(gate recurrent unit,GRU)来进行迭代优化,但是这样会导致计算量大并限制了在边缘设备上的部署性能。为了实现更轻量的光流估计方法,本文提出局部约束与局部扩张模块(local constraint and local dilation module,LC-LD module),通过结合卷积和一次轴注意力来替代自注意力,以较低的计算量对每个匹配特征点周边区域内不同重要程度的关注,生成更准确的相关性成本量,进而降低迭代次数,达到更轻量化的目的。其次,提出了混洗凸优化上采样,通过将分组卷积、混洗操作与凸优化上采样相结合,在实现其参数数量降低的同时进一步提高精度。实验结果证明了该方法在保证高精度的同时,运行效率显著提升,具有较高的应用前景。
- Abstract:
-
Existing optical flow estimation networks often utilize correlation cost volume and gated recurrent unit (GRU) to realize iterative optimization for improved accuracy. However, this approach incurs high computational volume and limits deployment performance on edge computing platforms. To realize a lightweight optical flow estimation method, the local constraint and local dilation (LC-LD) module is introduced. This approach combines convolution and primary axis attention to replace self-attention. A low computational volume enables the module to realize attentions with different important degrees for peripheral areas of each matching feature point, generate an accurate correlation cost volume, further reduce the iterations, and achieve lightweight features. In addition, the shuffling convex optimization upsampling method is proposed. This technique combines group convolution, shuffle operation, and convex optimization upsampling, further increasing the precision and reducing the number of parameters. Experimental results show that the proposed method achieves significant improvements in running efficiency while maintaining high accuracy and great potential for application.
更新日期/Last Update:
1900-01-01