[1]刘爽,陈璟.结合卷积和轴注意力的光流估计网络[J].智能系统学报,2024,19(3):575-583.[doi:10.11992/tis.202210029]
 LIU Shuang,CHEN Jing.Optical flow estimation network combining convolution and axial attention[J].CAAI Transactions on Intelligent Systems,2024,19(3):575-583.[doi:10.11992/tis.202210029]
点击复制

结合卷积和轴注意力的光流估计网络

参考文献/References:
[1] 李志慧, 胡永利, 赵永华, 等. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694–703
LI Zhihui, HU Yongli, ZHAO Yonghua, et al. Locating moving pedestrian from running vehicle[J]. Journal of Jilin University (engineering and technology edition), 2018, 48(3): 694–703
[2] 陈戈, 董明明. 基于特征点检测与光流法的运动目标跟踪算法[J]. 电子测量技术, 2017, 40(12): 214–219
CHEN Ge, DONG Mingming. Moving object tracking algorithm based on feature point detection and optical flow[J]. Electronic measurement technology, 2017, 40(12): 214–219
[3] SOUHILA K, KARIM A. Optical flow based robot obstacle avoidance[J]. International journal of advanced robotic systems, 2007, 4(1): 2.
[4] 李秀智, 杨爱林, 秦宝岭, 等. 基于光流反馈的单目视觉三维重建[J]. 光学学报, 2015, 35(5): 515001
LI Xiuzhi, YANG Ailin, QIN Baoling, et al. Monocular camera three dimensional reconstruction based on optical flow feedback[J]. Acta optica sinica, 2015, 35(5): 515001
[5] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial intelligence, 1981, 17(4): 185–203.
[6] BROX T, MALIK J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(3): 500–513.
[7] ZACH C, POCK T, BISCHOF H. A duality based approach for realtime TV-L 1 optical flow[C]//Joint Pattern Recognition Symposium. Berlin: Springer, 2007: 214-223.
[8] KROEGER T, TIMOFTE R, DAI Dengxin, et al. Fast optical flow using dense inverse search[C]//European Conference on Computer Vision. Cham: Springer, 2016: 471-488.
[9] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning optical flow with convolutional networks[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 2758-2766.
[10] ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: evolution of optical flow estimation with deep networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1647-1655.
[11] RANJAN A, BLACK M J. Optical flow estimation using a spatial pyramid network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2720-2729.
[12] SUN Deqing, YANG Xiaodong, LIU Mingyu, et al. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8934-8943.
[13] HUI T W, TANG Xiaoou, LOY C C. LiteFlowNet: a lightweight convolutional neural network for optical flow estimation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8981-8989.
[14] KONG Lingtong, SHEN Chunhua, YANG Jie. FastFlowNet: a lightweight network for fast optical flow estimation[C]//2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 10310-10316.
[15] TEED Z, DENG Jia. RAFT: recurrent all-pairs field transforms for optical flow[C]//European Conference on Computer Vision. Cham: Springer, 2020: 402-419.
[16] CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[EB/OL]. (2014-09-03)[2022-10-24]. http://arxiv.org/abs/1409.1259.
[17] JIANG Shihao, CAMPBELL D, LU Yao, et al. Learning to estimate hidden motions with global motion aggregation[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9752-9761.
[18] JIANG Shihao, LU Yao, LI Hongdong, et al. Learning optical flow from a few matches[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 16587-16595.
[19] JAEGLE A, BORGEAUD S, ALAYRAC J B, et al. Perceiver IO: a general architecture for structured inputs & outputs[EB/OL]. (2021-07-30)[2022-10-24]. http://arxiv.org/abs/2107.14795.
[20] XU Haofei, ZHANG Jing, CAI Jianfei, et al. Unifying flow, stereo and depth estimation[EB/OL]. (2022-11-10)[2023-10-24]. http://arxiv.org/abs/2211.05783.
[21] SUI Xiuchao, LI Shaohua, GENG Xue, et al. CRAFT: cross-attentional flow transformer for robust optical flow[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17581-17590.
[22] HUANG Zhaoyang, SHI Xiaoyu, ZHANG Chao, et al. FlowFormer: a transformer architecture for optical flow[EB/OL]. (2022-03-30)[2022-10-24]. http://arxiv.org/abs/2203.16194.
[23] ZHAO Shiyu, ZHAO Long, ZHANG Zhixing, et al. Global matching with overlapping attention for optical flow estimation[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17571-17580.
[24] 周海赟, 项学智, 翟明亮, 等. 结合注意力机制的深度学习光流网络[J]. 计算机科学与探索, 2020, 14(11): 1920–1929
ZHOU Haiyun, XIANG Xuezhi, ZHAI Mingliang, et al. Deep optical flow learning networks combined with attention mechanism[J]. Journal of frontiers of computer science and technology, 2020, 14(11): 1920–1929
[25] LI Yehao, YAO Ting, PAN Yingwei, et al. Contextual transformer networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(2): 1489–1500.
[26] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
[27] MAYER N, ILG E, H?USSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4040-4048.
[28] BUTLER D J, WULFF J, STANLEY G B, et al. A naturalistic open source movie for optical flow evaluation[C]//European Conference on Computer Vision. Berlin: Springer, 2012: 611-625.
[29] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3061-3070.
[30] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[31] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: criss-cross attention for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 603-612.
[32] HUI T W, TANG Xiaoou, LOY C C. A lightweight optical flow CNN-revisiting data fidelity and regularization[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(8): 2555–2569.

备注/Memo

收稿日期:2022-10-24。
基金项目:江苏省青年科学基金项目(BK20150159).
作者简介:刘爽,硕士研究生,主要研究方向为计算机视觉。E-mail:2430393663@qq.com;陈璟,博士,副教授,主要研究方向为生物信息学、计算机视觉。主持江苏省青年基金项目1项,参加国家自然基金项目3项,获得省部级奖4项,申请发明专利13个,授权发明专利4个,发表学术论文20余篇。 E-mail:chenjing@jiangnan.edu.cn
通讯作者:陈璟. E-mail:chenjing@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com