[1]束玮,李翔,孙纪舟,等.基于动态兴趣传播和知识图谱的推荐方法[J].智能系统学报,2024,19(4):997-1006.[doi:10.11992/tis.202209061]
 SHU Wei,LI Xiang,SUN Jizhou,et al.Recommendation method based on dynamic interest propagation and knowledge graph[J].CAAI Transactions on Intelligent Systems,2024,19(4):997-1006.[doi:10.11992/tis.202209061]
点击复制

基于动态兴趣传播和知识图谱的推荐方法

参考文献/References:
[1] CUI Zhihua, XU Xianghua, XUE Fei, et al. Personalized recommendation system based on collaborative filtering for IoT scenarios[J]. IEEE transactions on services computing, 2020, 13(4): 685–695.
[2] CHEN Liang, XU Yangjun, XIE Fenfang, et al. Data poisoning attacks on neighborhood-based recommender systems[J/OL]. Transactions on emerging telecommunications technologies (2020-01-14) [2022-06-15].https://doi.org/10.1002/ett.3872.
[3] CAO Da, HE Xiangnan, MIAO Lianhai, et al. Social-enhanced attentive group recommendation[J]. IEEE transactions on knowledge and data engineering, 2019, 33(3): 1195–1209.
[4] 刘华锋, 景丽萍, 于剑. 融合社交信息的矩阵分解推荐方法研究综述[J]. 软件学报, 2018, 29(2): 340–362
LIU Huafeng, JING Liping, YU Jian. Survey of matrix factorization based recommendation methods by integrating social information[J]. Journal of software, 2018, 29(2): 340–362
[5] HAN Jiayu, ZHENG Lei, XU Yuanbo, et al. Adaptive deep modeling of users and items using side information for recommendation[J]. IEEE transactions on neural networks and learning systems, 2019, 31(3): 737–748.
[6] ZHANG Jing, YANG Ying, ZHUO Li, et al. Personalized recommendation of social images by constructing a user interest tree with deep features and tag trees[J]. IEEE transactions on multimedia, 2019, 21(11): 2762–2775.
[7] 王大玲, 冯时, 张一飞, 等. 社会媒体多模态、多层次资源推荐技术研究[J]. 智能系统学报, 2014, 9(3): 265–275
WANG Daling, FENG Shi, ZHANG Yifei, et al. Study on the recommendations of multi-modal and multi-level resources in social media[J]. CAAI transactions on intelligent systems, 2014, 9(3): 265–275
[8] SANG Lei, XU Min, QIAN Shengsheng, et al. Context-dependent propagating-based video recommendation in multimodal heterogeneous information networks[J]. IEEE transactions on multimedia, 2020, 23: 2019–2032.
[9] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J]. 软件学报, 2012, 23(1): 1–20
WANG Licai, MENG Xiangwu, ZHANG Yujie. Context-aware recommender systems[J]. Journal of software, 2012, 23(1): 1–20
[10] 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2012, 41(8): 2161–2186
TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of computer applications, 2012, 41(8): 2161–2186
[11] JI Shaoxiong, PAN Shirui, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition and applications[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 494–514.
[12] LYU Ziyu, WU Yue, LAI Junjie, et al. Knowledge enhanced graph neural networks for explainable recommendation[J]. IEEE transactions on knowledge and data engineering, 2023, 33(5): 4954–4968.
[13] GUO Qingyu, ZHUANG Fuzhen, QIN Cuan, et al. A survey on knowledge graph-based recommender systems[J]. IEEE transactions on knowledge and data engineering, 2022, 34(8): 3549–3568.
[14] SHI Chuan, ZHANG Zhiqiang, LUO Ping, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne. New York: ACM, 2015: 453-462.
[15] 何云飞, 张以文, 吕智慧, 等. 异质信息网络中元路径感知的评分协同过滤[J]. 计算机学报, 2020, 43(12): 2385–2397
HE Yunfei, ZHANG Yiwen, LYU Zhihui, et al. Meta-path aware scoring collaborative filtering in heterogeneous information networks[J]. Chinese journal of computers, 2020, 43(12): 2385–2397
[16] LI Hui, WANG Yanlin, LYU Ziyu, et al. Multi-task learning for recommendation over heterogeneous information network[J]. IEEE transactions on knowledge and data engineering, 2022, 34(2): 789–802.
[17] WANG Quan, MAO Zhendong, WANG Bin, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE transactions on knowledge and data engineering, 2017, 29(12): 2724–2743.
[18] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[J]. Advances in neural information processing systems, 2013, 26: 2787–2795.
[19] LIN Hailun, LIU Yong, WANG Weiping, et al. Learning entity and relation embeddings for knowledge resolution[J]. Procedia computer science, 2017, 108: 345–354.
[20] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. New York: ACM, 2011: 809–816.
[21] YANG Bishan, YIH Wen-tau, HE Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29) [2022-06-15].https://arxiv.org/pdf/1412.6575v4.pdf.
[22] ZHANG Fuzheng, YUAN N J, LIAN Defu, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
[23] PALUMBO E, MONTI D, RIZZO G, et al. Entity2rec: property-specific knowledge graph embeddings for item recommendation[J]. Expert systems with applications, 2020, 151: 113235.
[24] WANG Hongwei, ZHANG Fuzheng, ZHAO Miao, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2000-2010.
[25] LI Chengte, HSU Cheng, ZHANG Yang. FairSR: fairness-aware sequential recommendation through multi-task learning with preference graph embeddings[J]. ACM transactions on intelligent systems and technology, 2022, 13(1): 1–21.
[26] WANG Hongwei, ZHANG Fuzheng, WANG Jialin, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.
[27] TANG Xiaoli, WANG Tengyun, YANG Haizhi, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1891-1899.
[28] SHA Xiao, SUN Zhu, ZHANG Jie. Attentive knowledge graph embedding for personalized recommendation [EB/OL]. (2021-09-15)[2022-06-15]. https://arxiv.org/pdf/1910.08288.pdf.
[29] WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313.
[30] WANG Hongwei, ZHANG Fuzheng, ZHANG Mengdi, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977.
[31] 崔焕庆, 宋玮情, 杨峻铸. 知识水波图卷积网络推荐模型[J/OL]. 计算机科学与探索 (2022-07-14) [2022-07-20]. http://kns.cnki.net/kcms/detail/11.5602.TP.20220713.2010.002.html.
CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge ripple graph convolutional network for recommendation[J/OL]. Journal of frontiers of computer science and technology(2022-07-14) [2022-07-20]. http://kns.cnki.net/kcms/detail/11.5602.TP.20220713.2010.002.html.

备注/Memo

收稿日期:2022-09-28。
基金项目:国家自然科学基金青年项目(62002131).
作者简介:束玮,硕士研究生,主要研究方向为知识图谱、推荐系统。E-mail:212006560479@hyit.edu.cn;李翔,教授,博士,中国计算机学会高级会员,主要研究方向为大数据、区块链、推荐系统、知识图谱。获中国仿真学会科学技术奖二等奖1项,中国人工智能学会吴文俊人工智能科技进步奖三等奖1项,发表学术论文40余篇。E-mail:hyitlixiang@hotmail.com;孙纪舟,讲师,博士,主要研究方向为分布式系统、数据库技术。参与国家自然科学基金973项目、国家核高基科技重大专项以及国家自然科学基金项目。E-mail:sunjizhou1985@hotmail.com
通讯作者:李翔. E-mail:hyitlixiang@hotmail.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com