[1]刘玉铠,周登文.基于多路特征渐进融合和注意力机制的轻量级图像超分辨率重建[J].智能系统学报,2024,19(4):863-873.[doi:10.11992/tis.202209045]
 LIU Yukai,ZHOU Dengwen.Lightweight super-resolution reconstruction via progressive multi-path feature fusion and attention mechanism[J].CAAI Transactions on Intelligent Systems,2024,19(4):863-873.[doi:10.11992/tis.202209045]
点击复制

基于多路特征渐进融合和注意力机制的轻量级图像超分辨率重建

参考文献/References:
[1] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview[J]. IEEE signal processing magazine, 2003, 20(3): 21–36.
[2] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(2): 295–307.
[3] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Hawaii: IEEE, 2017: 136-144.
[4] ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision. Munich: ACM, 2018: 286-301.
[5] HUI Zheng, WANG Xiumei, GAO Xinbo. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 723-731.
[6] ZHAO Hengyuan, KONG Xiangtao, HE Jingwen, et al. Efficient image super-resolution using pixel attention[C]// European Conference on Computer Vision. Glasgow: ACM, 2020: 56-72.
[7] WANG Xuehui, WANG Qing, ZHAO Yuzhi, et al. Lightweight single-image super-resolution network with attentive auxiliary feature learning[C]//Proceedings of the Asian Conference on Computer Vision. Kyoto: AFCV, 2021: 268-285.
[8] ZHAO Xiaole, LIAO Ying, HE Tian, et al. Fc2n: fully channel-concatenated network for single image super-resolution [EB/OL]. (2021-05-05)[2023-06-12].https://arxiv.org/pdf/1907.03221.pdf.
[9] DONG Chao, LOY C C, TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]// European Conference on Computer Vision. Amsterdam: ACM, 2016: 391-407.
[10] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645.
[11] TAI Ying, YANG Jian, LIU Xiaoming, et al. MemNet: a persistent memory network for image restoration[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4539-4547.
[12] 周登文, 赵丽娟. 基于递归残差网络的图像超分辨率重建[J]. 自动化学报, 2019, 45(6): 1157–1165
ZHOU Dengwen, ZHAO Lijuan. Image super-resolution based on recursive residual networks[J]. Acta automatica sinica, 2019, 45(6): 1157–1165
[13] HUI Zheng, GAO Xinbo, YANG Yuchu, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. Nice: ACM, 2019: 2024-2032.
[14] LIU Jie, TANG Jie, WU Gangshan. Residual feature distillation network for lightweight image super-resolution [C]//European Conference on Computer Vision. Glasgow: ACM, 2020: 41-55.
[15] 周登文, 王婉君. 基于区域互补注意力和多维注意力的轻量级图像超分辨率网络[J]. 模式识别与人工智能, 2022, 35(7): 625–636
ZHOU Dengwen, WANG Wanjun. Lightweight image supe-resolution network based on regional complementary attention and multi-dimensional attention[J]. Pattern recognition and artificial intelligence, 2022, 35(7): 625–636
[16] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654.
[17] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481.
[18] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Glasgow: ACM, 2018: 3-19.
[19] ZHANG Jiqing, LONG Chengjiang, WANG Yuxin, et al. A two-stage attentive network for single image super-resolution[J]. IEEE transactions on circuits and systems for video technology, 2021, 32: 1020–1033.
[20] TIMOFTE R, AGSTSSON E, VAN GOOL L, et al. Ntire 2017 challenge on single image super-resolution: methods and results[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Hawaii: IEEE, 2017: 114-125.
[21] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer VIsion and Pattern Recognition. Salt Lake City: IEEE, 2018: 586-595.
[22] HUANG Zhiyong, LI Wenbin, LI Jinxin, et al. Dual-path attention network for single image super-resolution[J]. Expert systems with applications, 2021, 169: 114450.
[23] LAI Weisheng, HUANG Jiabin, AHUJA N, et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 624-632.
[24] TAI Ying, YANG Jian, LIU Xiaoming. Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3147-3155.
[25] ZHANG Kai, ZUO Wangmeng, ZHANG Lei. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3262-3271.
[26] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of the European Conference on Computer Vision. Munich: ACM, 2018: 252-268.
[27] LUO Xiaotong, XIE Yuan, ZHANG Yulun, et al. Latticenet: towards lightweight image super-resolution with lattice block[C]//Computer Vision–ECCV 2020: 16th European Conference. Glasgow: ACM, 2020: 272-289.
[28] MUQEET A, HWANG J, YANG S, et al. Multi-attention based ultra lightweight image super-resolution[C]// European Conference on Computer Vision. Glasgow: ACM, 2020: 103-118.
[29] ZHOU Dengwen, CHEN Yiming, LI Wenbin, et al. Image super-resolution based on adaptive cascading attention network[J]. Expert systems with applications, 2021, 186: 115815.
[30] LI Wenbo, ZHOU Kun, QI Lu, et al. Lapar: linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond[C]//Proceedings of the Advances in Neural Information Processing Systems. Chicago: NIPS, 2021: 20343–20355.
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2022-09-23。
作者简介:刘玉铠,硕士,主要研究方向为计算机视觉和深度学习。E-mail:liuyk@ncepu.edu.cn;周登文,教授,主要研究方向为图像去噪、图像去马赛克、图像插值和图像超分辨率。发表学术论文50余篇。E-mail:zdw@ncepu.edu.cn
通讯作者:周登文. E-mail:zdw@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com