[1]向许,于洪,张晓霞,等.IsomapVSG-LIME:一种新的模型无关解释方法[J].智能系统学报,2023,18(4):841-848.[doi:10.11992/tis.202209010]
 XIANG Xu,YU Hong,ZHANG Xiaoxia,et al.IsomapVSG-LIME: a novel local interpretable model-agnostic explanations[J].CAAI Transactions on Intelligent Systems,2023,18(4):841-848.[doi:10.11992/tis.202209010]
点击复制

IsomapVSG-LIME:一种新的模型无关解释方法

参考文献/References:
[1] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071–2096
JI Shouling, LI Jinfeng, DU Tianyu, et al. A review of interpretability methods, applications and security of machine learning models[J]. Journal of computer research and development, 2019, 56(10): 2071–2096
[2] 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971–1986
CHEN Kerui, MENG Xiaofeng. Interpretability of Machine Learning[J]. Journal of computer research and development, 2020, 57(9): 1971–1986
[3] MOLNAR C. Interpretable machine learning[M]. Raleigh: Lulu Press, 2019.
[4] 程国建,刘连宏. 机器学习的可解释性综述[J]. 智能计算机与应用, 2020, 10(5): 6–9
CHENG Guojian , LIU Lianhong. An overview of the inte rpre tability of machine learning[J]. Intelligent computer and applications, 2020, 10(5): 6–9
[5] RIBEIRO M T, SINGH S, GUESTRIN C. “why should I trust You?”: explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135–1144.
[6] MODHUKUR V, SHARMA S, MONDAL M, et al. Machine learning approaches to classify primary and metastatic cancers using tissue of origin-based DNA methylation profiles[J]. Cancers, 2021, 13(15): 3768.
[7] PAN Pan, LI Yichao, XIAO Yongjiu, et al. Prognostic assessment of COVID-19 in the intensive care unit by machine learning methods: model development and validation[J]. Journal of medical internet research, 2020, 22(11): e23128.
[8] SCHULTEBRAUCKS K, CHOI K W, GALATZER-LEVY I R, et al. Discriminating heterogeneous trajectories of resilience and depression after major life stressors using polygenic scores[J]. JAMA psychiatry, 2021, 78(7): 744–752.
[9] FAN Yanghua, LI Dongfang, LIU Yifan, et al. Toward better prediction of recurrence for Cushing’s disease: a factorization-machine based neural approach[J]. International journal of machine learning and cybernetics, 2021, 12(3): 625–633.
[10] NóBREGA C, MARINHO L. Towards explaining recommendations through local surrogate models[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2019: 1671?1678.
[11] ZHU Fan, JIANG Min, QIU Yiming, et al. RSLIME: an efficient feature importance analysis approach for industrial recommendation systems[C]//2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1?6.
[12] DARIAN M, ONCHIS. Stable and explainable deep learning damage prediction for prismatic cantilever steel beam[J]. Computers in industry, 2021, 125: 103359.
[13] PANDEY P, RAI A, MITRA M. Explainable 1-D convolutional neural network for damage detection using Lamb wave[J]. Mechanical systems and signal processing, 2022, 164: 108220.
[14] GARREAU D, LUXBURG U. Explaining the explainer: A first theoretical analysis of LIME[C]//International Conference on Artificial Intelligence and Statistics. Palermo: PMLR, 2020: 1287?1296.
[15] SLACK D, HILGARD S, JIA E, et al. Fooling LIME and SHAP: adversarial attacks on post hoc explanation methods[C]//Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. New York: ACM, 2020: 180?186.
[16] RAHNAMA A H A, BOSTR?M H. A study of data and label shift in the LIME framework[EB/OL].(2019-10-31)[2022-09-06].https://arxiv.org/abs/1910.14421.
[17] ZAFAR M R, KHAN N. Deterministic local interpretable model-agnostic explanations for stable explainability[J]. Machine learning and knowledge extraction, 2021, 3(3): 525–541.
[18] ZHAO Xingyu, HUANG Wei, HUANG Xiaowei, et al. Baylime: Bayesian local interpretable model-agnostic explanations[C]//Uncertainty in Artificial Intelligence.Toronto: PMLR, 2021: 887?896.
[19] SHANKARANARAYANA S M, RUNJE D. ALIME: autoencoder based approach for local interpretability[M]. Cham: Springer International Publishing, 2019: 454?463.
[20] ZHOU Zhengze, HOOKER G, WANG Fei. S-LIME: stabilized-LIME for model explanation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2429?2438.
[21] VISANI G, BAGLI E, CHESANI F, et al. Statistical stability indices for LIME: obtaining reliable explanations for machine learning models[J]. Journal of the operational research society, 2022, 73(1): 91–101.
[22] ZHANG Xiaohan, XU Yuan, HE Yanlin, et al. Novel manifold learning based virtual sample generation for optimizing soft sensor with small data[J]. ISA transactions, 2021, 109: 229–241.
[23] TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319–2323.
[24] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2005: 985?990.
[25] RASOULI P, YU I C. EXPLAN: explaining black-box classifiers using adaptive neighborhood generation[C]//2020 International Joint Conference on Neural Networks . Piscataway: IEEE, 2020: 1-9.
[26] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5–32.
相似文献/References:
[1]叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148.
 YE Zhi-fei,WEN Yi-min,LU Bao-liang.A survey of imbalanced pattern classification problems[J].CAAI Transactions on Intelligent Systems,2009,4():148.
[2]刘奕群,张 敏,马少平.基于非内容信息的网络关键资源有效定位[J].智能系统学报,2007,2(1):45.
 LIU Yi-qun,ZHANG Min,MA Shao-ping.Web key resource page selection based on non-content inf o rmation[J].CAAI Transactions on Intelligent Systems,2007,2():45.
[3]马世龙,眭跃飞,许 可.优先归纳逻辑程序的极限行为[J].智能系统学报,2007,2(4):9.
 MA Shi-long,SUI Yue-fei,XU Ke.Limit behavior of prioritized inductive logic programs[J].CAAI Transactions on Intelligent Systems,2007,2():9.
[4]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(5):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6():396.
[5]文益民,强保华,范志刚.概念漂移数据流分类研究综述[J].智能系统学报,2013,8(2):95.[doi:10.3969/j.issn.1673-4785.201208012]
 WEN Yimin,QIANG Baohua,FAN Zhigang.A survey of the classification of data streams with concept drift[J].CAAI Transactions on Intelligent Systems,2013,8():95.[doi:10.3969/j.issn.1673-4785.201208012]
[6]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8():183.[doi:10.3969/j.issn.1673-4785.201209056]
[7]胡小生,钟勇.基于加权聚类质心的SVM不平衡分类方法[J].智能系统学报,2013,8(3):261.
 HU Xiaosheng,ZHONG Yong.Support vector machine imbalanced data classification based on weighted clustering centroid[J].CAAI Transactions on Intelligent Systems,2013,8():261.
[8]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[9]孔庆超,毛文吉,张育浩.社交网站中用户评论行为预测[J].智能系统学报,2015,10(3):349.[doi:10.3969/j.issn.1673-4785.201403019]
 KONG Qingchao,MAO Wenji,ZHANG Yuhao.User comment behavior prediction in social networking sites[J].CAAI Transactions on Intelligent Systems,2015,10():349.[doi:10.3969/j.issn.1673-4785.201403019]
[10]姚霖,刘轶,李鑫鑫,等.词边界字向量的中文命名实体识别[J].智能系统学报,2016,11(1):37.[doi:10.11992/tis.201507065]
 YAO Lin,LIU Yi,LI Xinxin,et al.Chinese named entity recognition via word boundarybased character embedding[J].CAAI Transactions on Intelligent Systems,2016,11():37.[doi:10.11992/tis.201507065]

备注/Memo

收稿日期:2022-09-06。
基金项目:国家自然科学基金项目(62136002,61876027);重庆英才计划项目(cstc2022ycjh-bgzxm0004).
作者简介:向许,硕士研究生,主要研究方向为可解释机器学习;于洪,教授,博士生导师,主要研究方向为三支决策、粗糙集、粒计算、认知计算、聚类分析和可信人工智能。主持国家自然科学基金项目10余项。发表学术论文100余篇,出版专著5部;王国胤,教授,博士生导师,国家级人才,重庆邮电大学副校长,主要研究方向为粗糙集、粒计算、数据挖掘、认知计算、大数据、人工智能。授权发明专利20项。发表学术论文300余篇,出版专著23部。
通讯作者:于洪.E-mail:yuhong@cqupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com