[1]许皓,钱宇华,王克琪,等.高低频通道特征交叉融合的低光人脸检测算法[J].智能系统学报,2024,19(2):472-481.[doi:10.11992/tis.202208034]
XU Hao,QIAN Yuhua,WANG Keqi,et al.Low-light face detection method based on the cross fusion of high-and low-frequency channel features[J].CAAI Transactions on Intelligent Systems,2024,19(2):472-481.[doi:10.11992/tis.202208034]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第2期
页码:
472-481
栏目:
人工智能院长论坛
出版日期:
2024-03-05
- Title:
-
Low-light face detection method based on the cross fusion of high-and low-frequency channel features
- 作者:
-
许皓1,2, 钱宇华1,2,3, 王克琪1, 刘畅1,2, 李俊霞1,2
-
1. 山西大学 大数据科学与产业研究院, 山西 太原 030006;
2. 山西大学 计算机与信息技术学院, 山西 太原 030006;
3. 山西大学 计算智能与中文信息处理教育部重点实验室, 山西 太原 030006
- Author(s):
-
XU Hao1,2, QIAN Yuhua1,2,3, WANG Keqi1, LIU Chang1,2, LI Junxia1,2
-
1. Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, China;
2. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China;
3. Key Laboratory of Computational Intelligence and Chinese Informat
-
- 关键词:
-
低光人脸检测; 高低频通道特征; 低光增强; 多尺度特征融合; 计算机视觉; 图像处理; 深度学习; 频率域分析
- Keywords:
-
low-light face detection; features of high-and low-frequency channels; low-light enhancement; multiscale feature fusion; computer vision; image processing; deep learning; frequency domain analysis
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202208034
- 文献标志码:
-
2023-12-05
- 摘要:
-
低光条件下捕获的人脸图像存在着噪声严重、对比度低等不足,极大影响了现有人脸检测器的准确性,另外,现有的低光图像检测算法欠缺小区域人脸信息的提取能力。为此,提出一种基于深度学习的两阶段人脸检测算法,即利用现有的低光图像增强算法对人脸图像进行增强后再进行检测。为提升检测算法对人脸信息的提取能力,设计一种新型的高低频通道特征交叉融合方法,该方法首先使用高低频通道特征可分离模块分离出不同尺度特征的高低频信息,然后对上述信息进行交叉融合,提升网络提取高频细节信息和低频色域信息的能力,进而提高检测网络的性能。对比试验和消融试验验证了该研究方法的有效性,试验结果表明该方法优于基准方法4.0% mAP。
- Abstract:
-
Face images captured under low-light conditions suffer from significant noise and low contrast, which negatively impact the accuracy of existing face detection systems. In addition, existing low-light image detection algorithms struggle to extract information from small facial areas. To tackle these issues, this paper proposes a two-stage face detection algorithm based on deep learning. This algorithm enhances low-light images before initiating the detection process using an established low-light image enhancement method. The objective is to enhance the ability of the detection method to extract facial information. Thus, a new cross-fusion method of high- and low-frequency channel features is designed. The first step involves using a separable module for high- and low-frequency channel features, enabling the separation of different scale features. These separated features are then cross-fused to improve the ability of the network to extract high-frequency details and low-frequency color information. This, in turn, improves the performance of the detection network. The comparative and ablation experiments validate the effectiveness of the proposed method. The experimental results demonstrate that our method surpasses the baseline method by 4.0% mAP.
备注/Memo
收稿日期:2022-08-22。
基金项目:科技创新2030?“新一代人工智能”重大项目(2021ZD0112400);国家自然科学基金项目(62136005);山西省揭榜挂帅项目(202201020101006)
作者简介:许皓,硕士研究生,主要研究方向为夜间人脸检测、目标检测、低光增强。E-mail:552420610@qq.com;钱宇华,教授、博士生导师,山西大学大数据科学与产业研究院院长,主要研究方向为人工智能、大数据、AI for Science。先后主持国家自然科学基金重点项目、国家重点研发计划项目、国防重点项目等国家/省部级项目20余项。曾获山西省科学技术奖(自然科学类)一等奖,入选全球高被引科学家。发表学术论文200余篇。E-mail:jinchengqyh@126.com;王克琪,博士研究生,主要研究方向为深度学习、计算机视觉、低照度图像增强。E-mail:wkq_2021@163.com
通讯作者:钱宇华. E-mail: jinchengqyh@126.com
更新日期/Last Update:
1900-01-01