[1]程德强,马尚,寇旗旗,等.基于YOLOv4改进特征融合及全局感知的目标检测算法[J].智能系统学报,2024,19(2):325-334.[doi:10.11992/tis.202207018]
 CHENG Deqiang,MA Shang,KOU Qiqi,et al.Target detection algorithm for improving feature fusion and global perception based on YOLOv4[J].CAAI Transactions on Intelligent Systems,2024,19(2):325-334.[doi:10.11992/tis.202207018]
点击复制

基于YOLOv4改进特征融合及全局感知的目标检测算法

参考文献/References:
[1] 程德强, 李腾腾, 郭昕, 等. 改进的SIFT邻域投票图像匹配算法[J]. 计算机工程与设计, 2020, 41(1): 162–168
CHENG Deqiang, LI Tengteng, GUO Xin, et al. Improved SIFT neighborhood voting image matching algorithm[J]. Computer engineering and design, 2020, 41(1): 162–168
[2] CHENG Deqiang, TANG Shixuan, FENG Chenchen, et al. Extended HOG-CLBC for pedstrain detection[J]. Opto-electronic engineer, 2018, 45(8): 180111.
[3] 张桂梅, 张松, 储珺. 一种新的基于局部轮廓特征的目标检测方法[J]. 自动化学报, 2014, 40(10): 2346–2355
ZHANG Guimei, ZHANG Song, CHU Jun. A new object detection algorithm using local contour features[J]. Acta automatica sinica, 2014, 40(10): 2346–2355
[4] 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029–1039
WANG Yanqing, MA Lei, TIAN Yuan. State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta automatica sinica, 2011, 37(9): 1029–1039
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587.
[6] CHE Xiangjiu, LIU Hualuo, SHAO Qingbin. Fabric defect recognition algorithm based on improved Fast RCNN[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 2038–2044.
[7] 黄继鹏, 史颖欢, 高阳. 面向小目标的多尺度Faster-RCNN检测算法[J]. 计算机研究与发展, 2019, 56(2): 319–327
HUANG Jipeng, SHI Yinghuan, GAO Yang. Multi-scale faster-RCNN algorithm for small object detection[J]. Journal of computer research and development, 2019, 56(2): 319–327
[8] SONG Ling, XIA Zhimin. Research on improved mask R-CNN network model for human keypoint detection[J]. Computer engineering and applications, 2021, 57(1): 150–160.
[9] 刘学平, 李玙乾, 刘励, 等. 自适应边缘优化的改进YOLOV3目标识别算法[J]. 微电子学与计算机, 2019, 36(7): 59–64
LIU Xueping, LI Yuqian, LIU Li, et al. Improved YOLOV3 target recognition algorithm for adaptive edge optimization[J]. Microelectronics & computer, 2019, 36(7): 59–64
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[11] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[12] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 318–327.
[13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2022-01-01]. https://arxiv.org/abs/1804.02767.
[14] BOCHKOVSKIY A, WANG Chienyao, LIAO Hongyuan. YOLOv4: Optimal Speed and Accuracy of Object Detection[EB/OL]. (2020-04-23)[2022-01-01]. https://arxiv.org/abs/2004.10934.
[15] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[16] GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-07-18)[2022-01-01]. https://arxiv.org/abs/2107.08430.pdf.
[17] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
[18] CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS journal of photogrammetry and remote sensing, 2014, 98: 119–132.
[19] AGGARWAL V, WANG Wenlin, ERIKSSON B, et al. Wide compression: tensor ring nets[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9329-9338.
[20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904–1916.
[21] LIN T Y, DOLL?R P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[22] TAN Mingxing, PANG Ruoming, LE Q V. EfficientDet: scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
[23] LIU Mingjie, WANG Xianhao, ZHOU Anjian, et al. UAV-YOLO: small object detection on unmanned aerial vehicle perspective[J]. Sensors, 2020, 20(8): 2238.
[24] 王凤随, 陈金刚, 王启胜, 等. 自适应上下文特征的多尺度目标检测算法[J]. 智能系统学报, 2022, 17(2): 276–285
WANG Fengsui, CHEN Jingang, WANG Qisheng, et al. Multi-scale target detection algorithm based on adaptive context features[J]. CAAI transactions on intelligent systems, 2022, 17(2): 276–285
[25] 赵文清, 杨盼盼. 双向特征融合与注意力机制结合的目标检测[J]. 智能系统学报, 2021, 16(6): 1098–1105
ZHAO Wenqing, YANG Panpan. Target detection based on bidirectional feature fusion and an attention mechanism[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1098–1105
[26] WANG Hao, WANG Qilong, GAO Mingqi, et al. Multi-scale location-aware kernel representation for object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1248-1257.
[27] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011–2023.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C] // Proc of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3-19
[29] TIAN Zhuoyu, MA Miao, YANG Kaifang. Object detection model for examination classroom based on cascade attention and point supervision mechanism[J]. Journal of software, 2022, 33(7): 2633–2645.
[30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[31] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803.
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[4]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[5]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[6]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[7]宁欣,李卫军,田伟娟,等.一种自适应模板更新的判别式KCF跟踪方法[J].智能系统学报,2019,14(1):121.[doi:10.11992/tis.201806038]
 NING Xin,LI Weijun,TIAN Weijuan,et al.Adaptive template update of discriminant KCF for visual tracking[J].CAAI Transactions on Intelligent Systems,2019,14():121.[doi:10.11992/tis.201806038]
[8]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报,2019,14(2):306.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14():306.[doi:10.11992/tis.201710019]
[9]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14():627.[doi:10.11992/tis.201905026]
[10]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14():1144.[doi:10.11992/tis.201905041]

备注/Memo

收稿日期:2022-07-12。
基金项目:国家自然科学基金项目(52204177).
作者简介:程德强,教授,博士生导师,博士,主要研究方向为计算机视觉与模式识别、图像智能检测。主持国家自然科学基金项目3项,江苏省重大成果转化项目等省部级各类科技项目10余项。以第一作者(通信作者)发表学术论文70余篇。E-mail:chengdq@ cumt.edu.cn;马尚,硕士研究生,主要研究方向为图像处理与目标检测。E-mail:710584238@qq.com;寇旗旗,讲师,主要研究方向为视频、图像处理与模式识别。E-mail:137156449@qq.com
通讯作者:程德强. E-mail:chengdq@cumt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com