[1]胡丹丹,张忠婷.基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法[J].智能系统学报,2024,19(3):653-660.[doi:10.11992/tis.202206034]
 HU Dandan,ZHANG Zhongting.Road target detection algorithm for autonomous driving scenarios based on improved YOLOv5s[J].CAAI Transactions on Intelligent Systems,2024,19(3):653-660.[doi:10.11992/tis.202206034]
点击复制

基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法

参考文献/References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: ACM, 2014: 580–587.
[2] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440–1448.
[3] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[4] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016: 379–387.
[5] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
[6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
[7] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: deconvolutional single shot detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2881-2890.
[8] LI Zuoxin, YANG Lu, ZHOU Fuqiang. FSSD: feature fusion single shot multibox detector[EB/OL]. (2017–12–04)[2022–06–20]. http://arxiv.org/abs/1712.00960.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
[10] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
[11] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018–04–08)[2022–06–20]. http://arxiv.org/abs/1804.02767.
[12] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. (2020–04–23)[2022–06–20]. https://arxiv.org/abs/2004.10934.
[13] GLENN J. Ultralytics. YOLOv5[EB/OL]. (2020–06–03)[2021–04–15]. https://github.com/ultralytics/yolov5.
[14] TAN Mingxing, PANG Ruoming, LE Q V. EfficientDet: scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778–10787.
[15] 陈泽, 叶学义, 钱丁炜, 等. 基于改进Faster R-CNN的小尺度行人检测[J]. 计算机工程, 2020, 46(9): 226–232,241
CHEN Ze, YE Xueyi, QIAN Dingwei, et al. Small-scale pedestrian detection based on improved faster R-CNN[J]. Computer engineering, 2020, 46(9): 226–232,241
[16] 郁强, 王宽, 王海. 一种多尺度YOLOv3的道路场景目标检测算法[J]. 江苏大学学报(自然科学版), 2021, 42(6): 628–633,641
YU Qiang, WANG Kuan, WANG Hai. A multi-scale YOLOv3 detection algorithm of road scene object[J]. Journal of Jiangsu University (natural science edition), 2021, 42(6): 628–633,641
[17] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658–666.
[18] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800–1807.
[19] LIU Songtao, HUANG Di, WANG Yunhong. Receptive field block net for accurate and fast object detection[C]//Computer Vision – ECCV 2018: 15th European Conference. Munich: ACM, 2018: 404–419.
[20] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1–9.
[21] LIU Songtao, HUANG Di, WANG Yunhong. Learning spatial fusion for single-shot object detection[EB/OL]. (2019–11–21)[2022–06–20]. http://arxiv.org/abs/1911.09516.
相似文献/References:
[1]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[2]王星,赵海良,王志刚.基于邻域系统的智能车辆最优轨迹规划方法[J].智能系统学报,2019,14(5):1040.[doi:10.11992/tis.201805004]
 WANG Xing,ZHAO Hailiang,WANG Zhigang.Optimal trajectory planning method of intelligent vehicles based on neighborhood system[J].CAAI Transactions on Intelligent Systems,2019,14():1040.[doi:10.11992/tis.201805004]
[3]张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758.[doi:10.11992/tis.202002010]
 ZHANG Xinyu,ZOU Zhenhong,LI Zhiwei,et al.Deep multi-modal fusion in object detection for autonomous driving[J].CAAI Transactions on Intelligent Systems,2020,15():758.[doi:10.11992/tis.202002010]
[4]陆军,李杨,鲁林超.远距离和遮挡下三维目标检测算法研究[J].智能系统学报,2024,19(2):259.[doi:10.11992/tis.202301001]
 LU Jun,LI Yang,LU Linchao.Long-distance and occluded 3D target detection algorithm[J].CAAI Transactions on Intelligent Systems,2024,19():259.[doi:10.11992/tis.202301001]
[5]唐友名,孙冠豫,孙贵斌,等.基于城市超车工况的智能车辆避障规划方法研究[J].智能系统学报,2024,19(3):619.[doi:10.11992/tis.202209060]
 TANG Youming,SUN Guanyu,SUN Guibin,et al.Autonomous vehicle trajectory planning based on urban overtaking conditions[J].CAAI Transactions on Intelligent Systems,2024,19():619.[doi:10.11992/tis.202209060]
[6]鲁斌,杨振宇,孙洋,等.基于多通道交叉注意力融合的三维目标检测算法[J].智能系统学报,2024,19(4):885.[doi:10.11992/tis.202305029]
 LU Bin,YANG Zhenyu,SUN Yang,et al.3D object detection algorithm with multi-channel cross attention fusion[J].CAAI Transactions on Intelligent Systems,2024,19():885.[doi:10.11992/tis.202305029]

备注/Memo

收稿日期:2022-06-21。
基金项目:中央高校基本科研业务项目(3122022PY17, 3122017003);天津市科技计划项目(17ZXHLGX00120)
作者简介:胡丹丹,副教授,主要研究方向为机器人环境感知、多传感器数据融合。申请发明专利30余项,发表学术论文20余篇。E-mail:ddhu@cauc.edu.cn;张忠婷,硕士研究生,主要研究方向为无人驾驶车辆环境感知,被评为校级优秀研究生,曾获国家励志奖学金,华北五省(市、自治区)大学生机器人大赛类人机器人竞技体育赛(投篮)竞赛项目一等奖。E-mail:1113276573@qq.com
通讯作者:胡丹丹. E-mail:ddhu@cauc.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com