[1]刘柯,黄玉柱,邓欣,等.采用多任务特征融合的脑电情绪识别方法[J].智能系统学报,2024,19(3):610-618.[doi:10.11992/tis.202206023]
LIU Ke,HUANG Yuzhu,DENG Xin,et al.Electroencephalogram emotion recognition method using multitask feature integration[J].CAAI Transactions on Intelligent Systems,2024,19(3):610-618.[doi:10.11992/tis.202206023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第3期
页码:
610-618
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-05-05
- Title:
-
Electroencephalogram emotion recognition method using multitask feature integration
- 作者:
-
刘柯, 黄玉柱, 邓欣, 于洪
-
重庆邮电大学 计算机科学与技术学院 重庆 400065
- Author(s):
-
LIU Ke, HUANG Yuzhu, DENG Xin, YU Hong
-
College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
- 关键词:
-
情感脑机接口; 脑电情绪识别; 脑网络; 微分熵; 近邻传播聚类; 图拉普拉斯正则; 多任务特征融合; 稀疏特征选择
- Keywords:
-
emotional brain-computer interface; EEG emotion recognition; brain networks; differential entropy; affinity propagation clustering; graph Laplacian regularization; multitask feature fusion; sparse feature selection
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202206023
- 文献标志码:
-
2024-03-27
- 摘要:
-
特征选择与融合是提升脑电信号情绪解码精度的重要手段之一。然而,当前脑电情绪解码中的特征选择方法常忽略了脑电信号内在数据结构的隐含信息。该文提出一种基于近邻传播聚类的多任务特征融合方法,通过${L_{2,1}}$范数约束实现稀疏特征选择,同时利用图拉普拉斯正则化保持不同子类间的潜在关系。该算法在不揭示真实样本标签的情况下,在子任务空间有效融合脑网络空间拓扑结构信息和微分熵信息,为高精度脑电信号情绪解码提供具有更高情绪表征能力的特征。DEAP和SEED数据集以及本实验室数据集的分析结果表明,该文提出的方法能显著提高脑电情绪解码的精度。
- Abstract:
-
Feature selection and integration is one of the crucial approaches to improving the emotion decoding accuracy of electroencephalogram (EEG) signals. However, current methods often neglect the implicit information of the intrinsic data structure in EEG signals. Herein, a multitask feature integration method is proposed based on affinity propagation clustering. This method uses the L2,1-norm constraint to select sparse features and uses graph Laplacian regularization to maintain potential relationships among different subclasses. In case of not disclosing real sample labels, the method has effectively integrated the spatial topology information of brain networks and differential entropy information in the subtask space, providing features with higher emotional characterization ability for the emotional decoding of high-accuracy EEG signals. The analytic results on DEAP and SEED datasets and the dataset of the laboratory show that the proposed method can markedly improve the decoding accuracy of EEG emotional decoding.
更新日期/Last Update:
1900-01-01