[1]曾繁慧,胡光闪,孙慧,等.因素空间理论下的因果概率推理分类算法研究[J].智能系统学报,2024,19(4):1042-1051.[doi:10.11992/tis.202206004]
ZENG Fanhui,HU Guangshan,SUN Hui,et al.A causal probabilistic inference classification algorithm based on factor space theory[J].CAAI Transactions on Intelligent Systems,2024,19(4):1042-1051.[doi:10.11992/tis.202206004]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第4期
页码:
1042-1051
栏目:
人工智能院长论坛
出版日期:
2024-07-05
- Title:
-
A causal probabilistic inference classification algorithm based on factor space theory
- 作者:
-
曾繁慧1,2, 胡光闪1,2, 孙慧1,2, 汪培庄1,2
-
1. 辽宁工程技术大学 理学院, 辽宁 阜新 123000;
2. 辽宁工程技术大学 智能工程与数学研究院, 辽宁 阜新 123000
- Author(s):
-
ZENG Fanhui1,2, HU Guangshan1,2, SUN Hui1,2, WANG Peizhuang1,2
-
1. College of Science, Liaoning Technical University, Fuxin 123000, China;
2. Institute of Intelligence Engineering and Mathematics, Liaoning Technical University, Fuxin 123000, China
-
- 关键词:
-
因素空间; 因果概率推理分类法; 可取度分类法; 贝叶斯网络; 因素概率论; 条件概率; 因果关系; 人工智能
- Keywords:
-
factor space; causal probabilistic inference taxonomy; desirability taxonomy; Bayesian network; factor probability theory; conditional probability; causality; artificial intelligence
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202206004
- 摘要:
-
机器学习方法与因果推理结合能极大地提升方法性能。为探究因果概率正逆向推理的分类效果,基于因素空间理论下的因素概率论,利用条件概率,研究正向因素概率推理原理及模型并提出正向因果概率推理分类法(forward causal probabilistic inference classification algorithm, FCPIC)和简化条件的可取度分类法;研究逆向因素概率推理原理及模型并结合贝叶斯网络提出逆向因果概率推理分类法(reverse causal probabilistic inference classification algorithm, RCPIC)。将3个分类算法与KNN(K-Nearest neighbor)和SVM(support vector machine)算法进行实例对比验证,研究结果表明:FCPIC算法、可取度分类算法和RCPIC算法简单有效、具有可行性和实用性,且可取度分类法和RCPIC算法性能优于SVM和KNN算法,FCPIC算法对实际数据预测中必要类有查全需求的情况更优。研究结论丰富了因素空间的理论研究和应用价值。
- Abstract:
-
The integration of machine learning techniques with causal reasoning can significantly enhance method performance. To investigate the classification effect of positive and reverse causal probability inferences, we rely our study on factor probability theory under factor space theory. Using conditional probability, we examined the principles and model of positive-factor probabilistic reasoning. This led to the proposal of the forward causal probabilistic inference classification algorithm (FCPIC) and a desirability classification method of simplified conditions. We also explored the principles and model of inverse factor probabilistic inference, which resulted in the proposal of the reverse causal probabilistic inference classification algorithm (RCPIC) along with a Bayesian network. The three classification algorithms were compared with the K-nearest neighbor (KNN) and support vector machine (SVM) algorithms. The results demonstrate that the FCPIC algorithm, the desirability classification algorithm, and the RCPIC algorithm are simple, effective, feasible, and practical. The performance of the desirability classification method and RCPIC algorithm surpasses those of both SVM and KNN. Additionally, the FCPIC algorithm is better when dealing with cases where the necessary classes in actual data prediction have full demand. These research findings contribute to the theoretical research and application value of factor space.
备注/Memo
收稿日期:2022-06-04。
基金项目:辽宁省教育厅资助项目(JYTQN2023210,LJKZZ20220047);阜新市社会科学课题(2023Fsllx154,2023Fsllx017).
作者简介:曾繁慧,教授,主要研究方向为基于因素空间的数据挖掘理论与应用。入选“辽宁省兴辽英才计划”,主持、参与完成中国工程院重点项目、国家自然科学基金项目、辽宁省科研基金项目等10余项。获首批国家一流课程、辽宁省研究生教学成果一等奖等80余项奖励。发表学术论文70余篇。E-mail:597873883@qq.com。;胡光闪,硕士研究生,主要研究方向为因素空间理论下的数据挖掘和智能决策。E-mail:1599546002@qq.com;汪培庄,教授,博士生导师,主要研究方向为模糊数学及其在人工智能中的应用,是我国模糊数学的传播者和主要学术带头人,曾任国际模糊系统协会副主席,于1982年在国际上创立因素空间的数学理论,现被公认为人工智能的数学基础理论。现为辽宁工程技术大学的特聘教授,并任智能工程与数学研究院院长,荣获中华人民共和国70周年纪念章。发表学术论文200余篇,出版学术著作10余部。E-mail:peizhuangw@126.com。
通讯作者:曾繁慧. E-mail: 597873883@qq.com
更新日期/Last Update:
1900-01-01