[1]蔡鸿顺,张琼敏,龙颖.面向阿尔茨海默症辅助诊断的多尺度域适应网络[J].智能系统学报,2023,18(5):1090-1098.[doi:10.11992/tis.202205050]
CAI Hongshun,ZHANG Qiongmin,LONG Ying.Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease[J].CAAI Transactions on Intelligent Systems,2023,18(5):1090-1098.[doi:10.11992/tis.202205050]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第5期
页码:
1090-1098
栏目:
学术论文—机器学习
出版日期:
2023-09-05
- Title:
-
Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease
- 作者:
-
蔡鸿顺, 张琼敏, 龙颖
-
重庆理工大学 计算机科学与工程学院, 重庆 400054
- Author(s):
-
CAI Hongshun, ZHANG Qiongmin, LONG Ying
-
College Of Computer Science And Engineering, Chongqing University of Technology, Chongqing 400054, China
-
- 关键词:
-
阿尔茨海默症; 磁共振影像; 域偏移; 多尺度信息; 域适应; 协同训练; 对抗学习; 距离度量
- Keywords:
-
Alzheimer’s disease; magnetic resonance imaging; domain shift; multiscale information; domain adaptation; joint training; adversarial learning; distance metrics
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202205050
- 摘要:
-
针对传统有监督学习忽略了磁共振影像数据(magnetic resonance imaging, MRI)由于个体差异和不同站点等原因导致的特征分布不一致这一域偏移问题,本文提出了一种多尺度域适应网络模型应用于阿尔茨海默症(Alzheimer disease,AD)的辅助诊断。首先在三维卷积神经网络中设计空洞空间金字塔模块进行特征的多尺度信息提取融合,并加入注意力一致性损失来保留域间转移的语义信息;然后协同训练两个域判别器和特征提取器进行对抗学习实现源域和目标域的特征对齐,并加入权重差异损失防止域判别器过拟合;最后,在对抗训练中引入基于最大密度差异的距离度量方法,增强两个域数据的特征对齐。实验结果表明,本文方法在面临域偏移的MRI数据上具有更好的识别精度和鲁棒性。
- Abstract:
-
The paper proposes a multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease. The network is designed to address the domain shift problem that traditional supervised learning ignores due to individual differences and different sites in magnetic resonance imaging (MRI) data. The network uses the Atrous Spatial Pyramid Pooling module in the three-dimensional convolutional neural network for feature extraction and fusion at multiple scales. Attention consistency loss is added to preserve the semantic information of interdomain transfer. Two domain discriminators and feature extractors are jointly trained in adversarial learning to achieve feature alignment of the source domain and target domain. Weight difference loss is added to prevent the domain discriminator from overfitting. A distance metric method based on the Maximum Density Divergence is introduced in the adversarial training to enhance the feature alignment of the two domain data. Experimental results reveal that this method exhibits superior recognition accuracy and robustness of MRI data facing the domain shift.
备注/Memo
收稿日期:2022-5-30。
基金项目:重庆市教委科学技术研究项目(KJQN202101116);重庆市研究生科研创新项目(CYS22660);重庆理工大学校级联合项目(gzlcx20223193).
作者简介:蔡鸿顺,硕士研究生,主要研究方向为迁移学习和图像处理;张琼敏,博士,讲师,主要研究方向为医学图像/信号处理与分析、多任务学习、多模态融合建模、计算机辅助诊断。主持重庆市自然科学基金等科技项目4项,作为项目主要研究人员参与国家及省部级自然科学基金项目9项,在国内外重要期刊上发表学术论 文10余篇。;龙颖,硕士研究生,主要研究方向为深度学习和图像处理
通讯作者:张琼敏.E-mail:zqm@cqut.edu.cn
更新日期/Last Update:
1900-01-01