[1]孙博言,王洪元,刘乾,等.基于多尺度和注意力机制的混合监督金属表面缺陷检测[J].智能系统学报,2023,18(4):886-893.[doi:10.11992/tis.202205042]
 SUN Boyan,WANG Hongyuan,LIU Qian,et al.Hybrid supervised metal surface defect detection based on multi-scale and attention[J].CAAI Transactions on Intelligent Systems,2023,18(4):886-893.[doi:10.11992/tis.202205042]
点击复制

基于多尺度和注意力机制的混合监督金属表面缺陷检测

参考文献/References:
[1] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017–1034
TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta automatica sinica, 2021, 47(5): 1017–1034
[2] TABERNIK D, ?ELA S, SKVAR? J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of intelligent manufacturing, 2020, 31(3): 759–776.
[3] KUMAR A. Computer-vision-based fabric defect detection: a survey[J]. IEEE transactions on industrial electronics, 2008, 55(1): 348–363.
[4] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley interdisciplinary reviews:computational statistics, 2010, 2(4): 433–459.
[5] 虞祖耀, 王洪元, 张继. 基于机器视觉的织布瑕疵在线检测[J]. 计算机工程与设计, 2016, 37(10): 2851–2856
YU Zuyao, WANG Hongyuan, ZHANG Ji. On-line detection of weaving defects based on machine vision[J]. Computer engineering and design, 2016, 37(10): 2851–2856
[6] FUKUSHIMA K, MIYAKE S. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition[M]. Berlin: Springer Berlin Heidelberg, 1982: 267?285.
[7] PARK J K, KWON B K, PARK J H, et al. Machine learning-based imaging system for surface defect inspection[J]. International journal of precision engineering and manufacturing-green technology, 2016, 3(3): 303–310.
[8] KYEONG K, KIM H. Classification of mixed-type defect patterns in wafer Bin maps using convolutional neural networks[J]. IEEE transactions on semiconductor manufacturing, 2018, 31(3): 395–402.
[9] HE Yu, SONG Kechen, MENG Qinggang, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE transactions on instrumentation and measurement, 2020, 69(4): 1493–1504.
[10] LI Feng, XI Qinggang. DefectNet: toward fast and effective defect detection[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1–9.
[11] GE Ce, WANG Jing, WANG Jingyu, et al. Towards automatic visual inspection: a weakly supervised learning method for industrial applicable object detection[J]. Computers in industry, 2020, 121: 103232.
[12] LI Qizhu, ARNAB A, TORR P H S. Weakly- and semi-supervised panoptic segmentation[M]. Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 106?124.
[13] SALEH F, ALIAKBARIAN M S, SALZMANN M, et al. Built-in foreground/background prior for weakly-supervised semantic segmentation[M]. Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 413?432.
[14] MINHAS M S, ZELEK J. Semi-supervised anomaly detection using autoencoders[J]. Journal of computational vision and imaging systems, 2019: 03674.
[15] BERGMANN P, L?WE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. (2018-07-05)[2022-05-25]. https://arxiv.org/abs/1807.02011.
[16] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182?4191.
[17] XIN Zihao, WANG Hongyuan, QI Pengyu, et al. Printed surface defect detection model based on positive samples[J]. Computers, materials & continua, 2022, 72(3): 5925–5938.
[18] SCHLEGL T, SEEBOCK P, WALDSTEIN S M, et al. F-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Medical image analysis, 2019, 54: 30–44.
[19] BOZIC J, TABERNIK D, SKOCAI D. Mixed supervision for surface-defect detection: from weakly to fully supervised learning[J]. Computers in industry, 2021, 129: 103459.
[20] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. (2014-06-24)[2022-05-25]. https://arxiv.org/abs/1406.6247.
[21] XU K, BA J L, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. New York: ACM, 2015: 2048?2057.
[22] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794?7803.
[23] DONG Hongwen, SONG Kechen, HE Yu, et al. PGA-net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE transactions on industrial informatics, 2020, 16(12): 7448–7458.
相似文献/References:
[1]魏文戈,谭晓阳.密集堆叠下的高相似度木块横截面检测[J].智能系统学报,2019,14(4):642.[doi:10.11992/tis.201806001]
 WEI Wenge,TAN Xiaoyang.Highly similar wood blocks detection under dense stacking[J].CAAI Transactions on Intelligent Systems,2019,14():642.[doi:10.11992/tis.201806001]

备注/Memo

收稿日期:2022-05-25。
基金项目:国家自然科学基金项目(61976028);2022年江苏省研究生科研创新计划(KYCX22_3066).
作者简介:孙博言,硕士研究生,主要研究方向为计算机视觉、缺陷检测;王洪元,教授,主要研究方向为计算机视觉、模式识别和智能系统,江苏省人工智能专委会常务理事,常州市计算机学会副理事长,CCF常州副主席。主持国家自然科学基金项目3项,获吴文俊人工智能科技进步三等奖。发表学术论文150余篇,出版专 著1部、教材3部;刘乾,硕士研究生,主要研究方向为计算机视觉
通讯作者:王洪元.E-mail:hywang@cczu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com