[1]赵振兵,王睿,赵文清,等.基于图知识推理的输电线路缺销螺栓识别方法[J].智能系统学报,2023,18(2):372-380.[doi:10.11992/tis.202205004]
 ZHAO Zhenbing,WANG Rui,ZHAO Wenqing,et al.Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2023,18(2):372-380.[doi:10.11992/tis.202205004]
点击复制

基于图知识推理的输电线路缺销螺栓识别方法

参考文献/References:
[1] 周远翔, 陈健宁, 张灵, 等. “双碳”与“新基建”背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396–2408
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High voltage engineering, 2021, 47(7): 2396–2408
[2] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47–59
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced engineering sciences, 2022, 54(1): 47–59
[3] YAN Guangjian, LI Chaoyang, ZHOU Guoqing, et al. Automatic extraction of power lines from aerial images[J]. IEEE geoscience and remote sensing letters, 2007, 4(3): 387–391.
[4] 傅博, 姜勇, 王洪光, 等. 输电线路巡检图像智能诊断系统[J]. 智能系统学报, 2016, 11(1): 70–77
FU Bo, JIANG Yong, WANG Hongguang, et al. Intelligent diagnosis system for patrol check images of power transmission lines[J]. CAAI transactions on intelligent systems, 2016, 11(1): 70–77
[5] MAO Tianqi, HUANG Kai, ZENG Xianwu, et al. Development of power transmission line defects diagnosis system for UAV inspection based on binocular depth imaging technology[C]//2019 2nd International Conference on Electrical Materials and Power Equipment. Guangzhou: IEEE, 2019: 478?481.
[6] 赵振兵, 张帅, 蒋炜, 等. 基于DBSCAN-FPN的输电线路螺栓缺销检测方法[J]. 中国电力, 2021, 54(3): 45–54
ZHAO Zhenbing, ZHANG Shuai, JIANG Wei, et al. Detection method for bolts with mission pins on transmission lines based on DBSCAN-FPN[J]. Electric power, 2021, 54(3): 45–54
[7] ZHAO Zhenbing, QI Hongyu, QI Yincheng, et al. Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6080–6091.
[8] HE Hui, LI Yuchen, YANG Jing, et al. Pin-missing defect recognition based on feature fusion and spatial attention mechanism[J]. Energy reports, 2022, 8: 656–663.
[9] WANG Hongchao, SHAO Yunfeng, ZOU Suli, et al. Detection of cotter pins missing of connection fittings on transmission lines of power system[C]//2021 40th Chinese Control Conference. Shanghai: IEEE, 2021: 6873?6879.
[10] LIN Z, LIANG Y, JIANG Q. A bolt defect recognition algorithm based on attention model[C]// Proceedings of the 7th International Conference on Fuzzy Systems and Data Mining. Seoul: IEEE, 2021: 86?93.
[11] 王凯, 王健, 刘刚, 等. 基于辅助数据RetinaNet算法的销钉缺陷智能识别[J]. 广东电力, 2019, 32(9): 41–48
WANG Kai, WANG Jian, LIU Gang, et al. RetinaNet algorithm based on auxiliary data for intelligent identification on pin defects[J]. Guangdong electric power, 2019, 32(9): 41–48
[12] 张珂, 何颖宣, 赵凯, 等. 可变形NTS-Net的螺栓属性多标签分类[J]. 中国图象图形学报, 2021, 26(11): 2582–2593
ZHANG Ke, HE Yingxuan, ZHAO Kai, et al. Multi-label classification method of bolt attributes based on deformable NTS-Net[J]. Journal of image and graphics, 2021, 26(11): 2582–2593
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[14] 赵强主编. 白俊峰, 陈建华编写. 输电线路金具理论与应用[M]. 北京: 中国电力出版社, 2013.
[15] OGUZ YAZICI V, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13437?13446.
[16] LI Dangwei, CHEN Xiaotang, HUANG Kaiqi. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//2015 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur: IEEE, 2015: 111?115.
[17] ZHOU Fengtao, HUANG Sheng, XING Yun. Deep semantic dictionary learning for multi-label image classification[J]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021, 35(4): 3572–3580.
[18] NGUYEN H D, VU X S, LE D T. Modular graph transformer networks for multi-label image classification[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(10): 9092–9100.
[19] Fu K, Li J, Ma L, et al. Intrinsic relationship reasoning for small object detection[EB/OL]. (2020?09?02)[2022?05?11].https://arxiv.org/abs/2009.00833.
[20] CHEN Zhaomin, WEI Xiushen, WANG Peng, et al. Multi-label image recognition with graph convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5172?5181.
[21] GAO Binbin, ZHOU Hongyu. Learning to discover multi-class attentional regions for multi-label image recognition[J]. IEEE transactions on image processing:a publication of the IEEE Signal Processing Society, 2021, 30: 5920–5932.
[22] ZHAO Jiawei, YAN Ke, ZHAO Yifan, et al. Transformer-based dual relation graph for multi-label image recognition[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 163?172.
[23] YE Jin, HE Junjun, PENG Xiaojiang, et al. Attention-driven dynamic graph convolutional network for multi-label image recognition[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 649?665.
[24] LIU Yong, WANG Ruiping, SHAN Shiguang, et al. Structure inference net: object detection using scene-level context and instance-level relationships[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6985?6994.
[25] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237–246
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237–246
[26] KIPF T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017?02?22)[2022?05?11].https://arxiv.org/abs/1609.02907.
[27] XIE R, LIU Z, SUN M. Representation learning of knowledge graphs with hierarchical types[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 2965?2971.
[28] EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303–338.
相似文献/References:
[1]岳湘,王洪光,姜勇,等.一种110kV输电线路巡检机器人机构研究[J].智能系统学报,2016,11(2):155.[doi:10.11992/tis.201511032]
 YUE Xiang,WANG Hongguang,JIANG Yong,et al.Design approach for a 110 kV power transmission line inspection robot mechanism[J].CAAI Transactions on Intelligent Systems,2016,11():155.[doi:10.11992/tis.201511032]
[2]宋屹峰,王洪光,康文杰,等.DOI面向断股补修作业任务的电力机器人机构设计[J].智能系统学报,2017,12(2):150.[doi:10.11992/tis.201605004]
 SONG Yifeng,WANG Hongguang,KANG Wenjie,et al.Optimizing electric power robot design for broken-strand repair tasks[J].CAAI Transactions on Intelligent Systems,2017,12():150.[doi:10.11992/tis.201605004]
[3]翟永杰,杨旭,赵振兵,等.融合共现推理的Faster R-CNN输电线路金具检测[J].智能系统学报,2021,16(2):237.[doi:10.11992/tis.202012023]
 ZHAI Yongjie,YANG Xu,ZHAO Zhenbing,et al.Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J].CAAI Transactions on Intelligent Systems,2021,16():237.[doi:10.11992/tis.202012023]
[4]翟永杰,王乾铭,杨旭,等.融合外部知识的输电线路多金具解耦检测方法[J].智能系统学报,2022,17(5):980.[doi:10.11992/tis.202107026]
 ZHAI Yongjie,WANG Qianming,YANG Xu,et al.A multi-fitting decoupling detection method for transmission lines based on external knowledge[J].CAAI Transactions on Intelligent Systems,2022,17():980.[doi:10.11992/tis.202107026]
[5]戚银城,赵席彬,耿劭锋,等.基于遮挡关系推理的输电线路图像金具检测[J].智能系统学报,2022,17(6):1154.[doi:10.11992/tis.202108036]
 QI Yincheng,ZHAO Xibin,GENG Shaofeng,et al.Fittings detection in transmission line images with occlusion relation inference[J].CAAI Transactions on Intelligent Systems,2022,17():1154.[doi:10.11992/tis.202108036]
[6]王巍,杨耀权,王乾铭,等.嵌入视觉关系掩码的多类别金具检测方法[J].智能系统学报,2023,18(3):440.[doi:10.11992/tis.202202021]
 WANG Wei,YANG Yaoquan,WANG Qianming,et al.A multi-category fitting detection method with embedded visual relation masks[J].CAAI Transactions on Intelligent Systems,2023,18():440.[doi:10.11992/tis.202202021]
[7]赵振兵,郭广学,王艺衡,等.融合边缘感知与统计纹理知识的输电线路金具锈蚀检测[J].智能系统学报,2024,19(5):1228.[doi:10.11992/tis.202306009]
 ZHAO Zhenbing,GUO Guangxue,WANG Yiheng,et al.Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge[J].CAAI Transactions on Intelligent Systems,2024,19():1228.[doi:10.11992/tis.202306009]
[8]戚银城,耿劭锋,赵振兵,等.基于特征迁移的螺栓图像超分辨率处理方法[J].智能系统学报,2023,18(4):858.[doi:10.11992/tis.202201009]
 QI Yincheng,GENG Shaofeng,ZHAO Zhenbing,et al.A method for super resolution processing of bolt image based on feature transfer[J].CAAI Transactions on Intelligent Systems,2023,18():858.[doi:10.11992/tis.202201009]

备注/Memo

收稿日期:2022-05-11。
基金项目:国家自然科学基金项目(61871182, U21A20486);河北省自然科学基金项目(F2020502009, F2021502008, F2021502013).
作者简介:赵振兵,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金项目等纵向课题10项;获省科技进步一等奖2项;以第一完成人获得国家专利授权16项;以第一作者出版专著2部,发表学术论文50余篇;王睿,硕士研究生,主要研究方向为电力视觉与知识推理;赵文清,教授,博士,主要研究方向为人工智能和图像处理。发表学术论文80余篇
通讯作者:赵振兵. E-mail:zhaozhenbing@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com