[1]高洪元,王世豪,程建华,等.冲击噪声下基于演化长短时记忆神经网络的调制信号识别[J].智能系统学报,2023,18(4):676-687.[doi:10.11992/tis.202205002]
 GAO Hongyuan,WANG Shihao,CHENG Jianhua,et al.Modulation signal recognition based on evolutionary long short-term memory neural network under impulse noise[J].CAAI Transactions on Intelligent Systems,2023,18(4):676-687.[doi:10.11992/tis.202205002]
点击复制

冲击噪声下基于演化长短时记忆神经网络的调制信号识别

参考文献/References:
[1] IGLESIAS V, GRAJAL J, YESTE-OJEDA O. Automatic modulation classifier for military applications[C]//2011 19th European Signal Processing Conference. Barcelona: IEEE, 2011: 1814?1818.
[2] DOBRE O A, ABDI A, BAR-NESS Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IET communications, 2007, 1(2): 137–156.
[3] 刘明骞, 李兵兵, 曹超凤, 等. 认知无线电中非高斯噪声下数字调制信号识别方法[J]. 通信学报, 2014, 35(1): 82–88
LIU Mingqian, LI Bingbing, CAO Chaofeng, et al. Recognition method of digital modulation signal under non Gaussian noise in cognitive radio[J]. Journal on communications, 2014, 35(1): 82–88
[4] AALO V A, PEPPAS K P, EFTHYMOGLOU G, et al. Evaluation of average bit error rate for wireless networks with alpha-stable interference[J]. Electronics letters, 2014, 50(1): 47–49.
[5] TIAN Xiaodi, SUN Xiaodong, YU Xiaohui, et al. Modulation pattern recognition of communication signals based on fractional low-order choi-williams distribution and convolutional neural network in impulsive noise environment[C]//2019 IEEE 19th International Conference on Communication Technology. Xi’an: IEEE, 2019: 188-192.
[6] TSIHRINTZIS G A, NIKIAS C L. Fast estimation of the parameters of alpha-stable impulsive interference[J]. IEEE transactions on signal processing, 1996, 44(6): 1492–1503.
[7] 查雄, 彭华, 秦鑫, 等. 基于多端卷积神经网络的调制识别方法[J]. 通信学报, 2019, 40(11): 30–37
CHA Xiong, PENG Hua, QIN Xin, et al. Modulation recognition method based on multi-inputs convolution neural network[J]. Journal on communications, 2019, 40(11): 30–37
[8] WANG Yu, LIU Miao, YANG Jie, et al. Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE transactions on vehicular technology, 2019, 68(4): 4074–4077.
[9] MENG Fan, CHEN Peng, WU Lenan, et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE transactions on vehicular technology, 2018, 67(11): 10760–10772.
[10] C?MARA T V R O, LIMA A D L, LIMA B M M, et al. Automatic modulation classification architectures based on cyclostationary features in impulsive environments[J]. IEEE access, 2019, 7: 138512–138527.
[11] GAO H Y, WANG S H, SU Y M, et al. Evolutionary neural network based on quantum elephant herding algorithm for modulation recognition in impulse noise[J]. KSII transactions on Internet and information systems, 2021, 15(7): 2356–2376.
[12] ZHANG Kun, LIANG Lin, HUANG Ying, et al. A network traffic prediction model based on quantum inspired PSO and neural network[C]//2013 Sixth International Symposium on Computational Intelligence and Design. Hangzhou: IEEE, 2013: 219-222.
[13] DENG Wu, LIU Hailong, XU Junjie, et al. An improved quantum-inspired differential evolution algorithm for deep belief network[J]. IEEE transactions on instrumentation and measurement, 2020, 69(10): 7319-7327.
[14] 杨发权, 李赞, 罗中良. 混合调制信号调制识别方法[J]. 中山大学学报(自然科学版), 2014, 53(1): 42–46
YANG Faquan, LI Zan, LUO Zhongliang. Method of modulation recognition of mixed modulation signal[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(1): 42–46
[15] 刘高辉, 张娟娟. α稳定分布噪声下数字频移键控信号的分数低阶循环谱分析[J]. 电波科学学报, 2017, 32(1): 65–72
LIU Gaohui, ZHANG Juanjuan. Fractional lower order cyclic spectrum analysis of digital frequency shift keying signals under the alpha stable distribution noise[J]. Chinese journal of radio science, 2017, 32(1): 65–72
[16] KOUNOVSKY T, MALEK J. Single channel speech enhancement using convolutional neural network[C]// IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics. Donostia: IEEE, 2017: 1?5.
[17] 李悦, 马晓川, 王磊, 等. 非高斯环境下的深度学习脉冲信号去噪与重构[J]. 应用声学, 2021, 40(1): 131–141
LI Yue, MA Xiaochuan, WANG Lei, et al. Using deep learning to de-noise and reconstruct pulse signals in non-Gaussian environment[J]. Journal of applied acoustics, 2021, 40(1): 131–141
[18] SHADRAVAN S, NAJI H R, BARDSIRI V K. The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems[J]. Engineering applications of artificial intelligence, 2019, 80: 20-34.
[19] 高洪元, 刁鸣. 量子群智能及其在通信技术中的应用[M]. 北京: 电子工业出版社, 2016: 1?3.
[20] SHAO Bilin, LI Maolin, ZHAO Yu, et al. Nickel price forecast based on the LSTM neural network optimized by the improved PSO algorithm[J]. Mathematical problems in engineering, 2019, 2019: 1–15.
[21] KALLURI S, ARCE G R. Adaptive weighted myriad filter algorithms for robust signal processing in/spl alpha /-stable noise environments[J]. IEEE transactions on signal processing, 1998, 46(2): 322–334.
[22] MENG Xianbing, GAO X Z, LU Lihua, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of experimental & theoretical artificial intelligence, 2016, 28(4): 673–687.
[23] SEO J H, IM C H, HEO C G, et al. Multimodal function optimization based on particle swarm optimization[J]. IEEE transactions on magnetics, 2006, 42(4): 1095–1098.
[24] DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-based systems, 2019, 165: 169–196.
[25] WANG Gaige, DEB S, COELHO L. Elephant herding optimization[C]//2015 3rd International Symposium on Computational and Business Intelligence . Bali: IEEE, 2015: 1-5.
[26] HU Yaohua, LIU Mingqian, CAO Chaofeng, et al. Modulation classification in Alpha stable noise[C]//2016 IEEE 13th International Conference on Signal Processing. Chengdu: IEEE, 2016: 1275-1278.
[27] 杨洁, 弋佳东. 改进GA优化BP神经网络的雷达信号识别[J]. 西安邮电大学学报, 2019, 24(6): 11–15
YANG Jie, YI Jiadong. Radar signal recognition based on BP neural network optimized by improved GA[J]. Journal of Xi’an University of Posts and Telecommunications, 2019, 24(6): 11–15
[28] XIE Wenwu, HU Sheng, YU Chao, et al. Deep learning in digital modulation recognition using high order cumulants[J]. IEEE access, 2019, 7: 63760–63766.
[29] JIANG Xinrui, CHEN Hui, ZHAO Yaodong, et al. Automatic modulation recognition based on mixed-type features[J]. International journal of electronics, 2021, 108(1): 105–114.

备注/Memo

收稿日期:2022-05-06。
基金项目:国家自然科学基金项目(62073093);黑龙江省自然科学基金项目(LH2020F017);黑龙江省博士后科研启动金项目(LBH-Q19098).
作者简介:高洪元,副教授,博士生导师,主要研究方向为无线能量采集通信、智能计算、人工智能、无线电信号识别和分类、阵列信号处理、认知无线电、5G中的HetNets、通信理论、图像处理和massive MIMO。主持国家自然科学基金项目、中国博士后科学基金特别资助等20余项,授权发明专利110项。发表学术论文100余篇,出版学术专著2部。;王世豪,硕士研究生,主要研究方向为智能计算、机器学习、调制信号识别和无人机集群信息交互。;程建华,教授,主要研究方向为惯性导航系统、卫星导航和综合导航。主持国家自然科学基金项目、军事“973”项目、装备预研项目等20余项,获省部级科技奖项7项,授权发明专利13项。发表学术论文100余篇,出版学术著作7部。
通讯作者:高洪元.E-mail:gaohongyuan@hrbeu,edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com