[1]高洪元,王世豪,程建华,等.冲击噪声下基于演化长短时记忆神经网络的调制信号识别[J].智能系统学报,2023,18(4):676-687.[doi:10.11992/tis.202205002]
GAO Hongyuan,WANG Shihao,CHENG Jianhua,et al.Modulation signal recognition based on evolutionary long short-term memory neural network under impulse noise[J].CAAI Transactions on Intelligent Systems,2023,18(4):676-687.[doi:10.11992/tis.202205002]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第4期
页码:
676-687
栏目:
学术论文—机器学习
出版日期:
2023-07-15
- Title:
-
Modulation signal recognition based on evolutionary long short-term memory neural network under impulse noise
- 作者:
-
高洪元1, 王世豪1, 程建华2, 郭瑞晨1, 张志伟1
-
1. 哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
GAO Hongyuan1, WANG Shihao1, CHENG Jianhua2, GUO Ruichen1, ZHANG Zhiwei1
-
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
调制信号识别; 冲击噪声; 卷积神经网络; 量子旗鱼优化算法; 长短时记忆神经网络; 稳定分布; 超参数; 短时傅里叶变换
- Keywords:
-
modulating signal recognition; impulsive noise; convolution neural network (CNN); quantum sailfish optimization algorithm (QSFA); long short-term memory (LSTM) neural network; stable distribution; hyper parameters; short time Fourier transform
- 分类号:
-
TP183; TN911.7
- DOI:
-
10.11992/tis.202205002
- 摘要:
-
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer, SFO)设计了量子旗鱼算法(quantum sailfish algorithm, QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。
- Abstract:
-
In order to solve the problems of weak resistance against impulsve noise and difficulty in determining hyperparameters of the modulation signal recognition method with long short-term memory (LSTM) neural network under impulse noise, this paper presents a modulation recognition method based on evolutionary LSTM neural network. The convolution neural network (CNN) denoising model based on short-time Fourier transform is used to denoise the data set. Then, combined with the quantum computation mechanism and sailfish optimizer (SFO), the quantum sailfish algorithm (QSFA) is designed to evolve LSTM neural network to obtain the optimal hyper-parameters. An evolutionary LSTM neural network is used as a classifier for automatic modulating signal recognition. Simulation results show that the recognition accuracy is greatly improved by using the designed CNN denoising and evolutionary LSTM neural network model. Moreover, the evolutionary LSTM neural network model based on quantum sailfish algorithm reduces the probability that traditional LSTM neural network is easy to fall into local minimum or over fitting. When the mixed signal-to-noise ratio (MSNR) is 0 dB, the average recognition accuracy of the proposed method for 11 modulated signals is more than 90%.
备注/Memo
收稿日期:2022-05-06。
基金项目:国家自然科学基金项目(62073093);黑龙江省自然科学基金项目(LH2020F017);黑龙江省博士后科研启动金项目(LBH-Q19098).
作者简介:高洪元,副教授,博士生导师,主要研究方向为无线能量采集通信、智能计算、人工智能、无线电信号识别和分类、阵列信号处理、认知无线电、5G中的HetNets、通信理论、图像处理和massive MIMO。主持国家自然科学基金项目、中国博士后科学基金特别资助等20余项,授权发明专利110项。发表学术论文100余篇,出版学术专著2部。;王世豪,硕士研究生,主要研究方向为智能计算、机器学习、调制信号识别和无人机集群信息交互。;程建华,教授,主要研究方向为惯性导航系统、卫星导航和综合导航。主持国家自然科学基金项目、军事“973”项目、装备预研项目等20余项,获省部级科技奖项7项,授权发明专利13项。发表学术论文100余篇,出版学术著作7部。
通讯作者:高洪元.E-mail:gaohongyuan@hrbeu,edu.cn
更新日期/Last Update:
1900-01-01