[1]白健鹏,王巍,陈雨溪,等.基于轻量型YOLOv5的风机桨叶检测与空间定位[J].智能系统学报,2022,17(6):1173-1181.[doi:10.11992/tis.202204016]
 BAI Jianpeng,WANG Wei,CHEN Yuxi,et al.Detection and spatial location of wind turbine blades based on lightweight YOLOv5[J].CAAI Transactions on Intelligent Systems,2022,17(6):1173-1181.[doi:10.11992/tis.202204016]
点击复制

基于轻量型YOLOv5的风机桨叶检测与空间定位

参考文献/References:
[1] 陈诗一, 许璐. “双碳”目标下全球绿色价值链发展的路径研究[J]. 北京大学学报(哲学社会科学版), 2022, 59(2): 5–12
CHEN Shiyi, XU Lu. A study on the development path of global green value chain to achieve the targets of carbon peaking and carbon neutrality[J]. Journal of Peking University (philosophy and social sciences edition), 2022, 59(2): 5–12
[2] 蒋元锐. 武钢委员: “双碳”目标呼唤风电赋能[N]. 中华工商时报, 2022-03-11(2).
JIANG Yuanrui. Member WU Gang: The targets of carbon peaking and carbon neutrality call for wind power energization[N]. China bussiness times, 2022-03-11(2).
[3] CHATTERJEE J, DETHLEFS N. Scientometric review of artificial intelligence for operations & maintenance of wind turbines: the past, present and future[J]. Renewable and sustainable energy reviews, 2021, 144: 111051.
[4] 田枫, 白欣宇, 刘芳, 等. 一种轻量化油田危险区域入侵检测算法[J]. 智能系统学报, 2022, 17(3): 634–642
TIAN Feng, BAI Xinyu, LIU Fang, et al. A lightweight intrusion detection algorithm for hazardous areas in oilfields[J]. CAAI transactions on intelligent systems, 2022, 17(3): 634–642
[5] ZHOU Yan, CHEN Shaochang, WANG Yiming, et al. Review of research on lightweight convolutional neural networks[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Chongqing: IEEE, 2020: 1713-1720.
[6] 何锐波, 狄岚, 梁久祯. 一种改进的深度学习的道路交通标识识别算法[J]. 智能系统学报, 2020, 15(6): 1121–1130
HE Ruibo, DI Lan, LIANG Jiuzhen. An improved deep learning algorithm for road traffic identification[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1121–1130
[7] JACOB B, KLIGYS S, CHEN Bo, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2704-2713.
[8] KRISHNAMOORTHI R. Quantizing deep convolutional networks for efficient inference: a whitepaper[EB/OL]. (2018-06-21)[2022-04-11].https://arxiv.org/abs/1806.08342.
[9] LUO JIAN-HAO, WU JIANXIN. An entropy-based pruning method for CNN compression[EB/OL]. (2017-06-19)[2022-04-11].https://arxiv.org/abs/1706.05791.
[10] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09)[2022-04-11].https://arxiv.org/abs/1503.02531.
[11] LI Yahui, LIU Jun, WANG Lilin. Lightweight network research based on deep learning: a review[C]//2018 37th Chinese Control Conference (CCC). Wuhan: IEEE, 2018: 9021-9026.
[12] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[13] MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//European Conference on Computer Vision. Cham: Springer, 2018: 122-138.
[14] WU Bichen, WAN A, YUE Xiangyu, et al. Shift: a zero FLOP, zero parameter alternative to spatial convolutions[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9127-9135.
[15] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 1577-1586.
[16] 潘佳捷. 风机叶片的无人机自主巡检系统[D]. 成都: 电子科技大学, 2020.
PAN Jiajie. An autonomous inspection system for wind turbine blade based on unmanned aerial vehicle[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[17] 朱凯华. 面向风机叶片巡检的无人机自动航迹线规划研究[D]. 北京: 北京交通大学, 2021.
ZHU Kaihua. Research on automatic path planning of UAV for wind turbine blade inspection[D]. Beijing: Beijing Jiaotong University, 2021.
[18] 勾月凯, 代海涛, 董健, 等. 风力发电机组叶片智能巡检系统研究[C]//第五届中国风电后市场专题研讨会. 上海: [出版者不详], 2018: 203-208.
GOU Yuekai, DAI Haitao, DONG Jian, et al. Research on intelligent inspection system of wind turbine blades[C]//Proceedings of the 5th China Wind Power Post Market Symposium. Shanghai: [s,n.], 2018: 203-208.
[19] KANELLAKIS C, FRESK E, MANSOURI S S, et al. Towards visual inspection of wind turbines: a case of visual data acquisition using autonomous aerial robots[J]. IEEE access, 2020, 8: 181650–181661.
[20] GUO Haowen, CUI Qiangqiang, WANG Jinwang, et al. Detecting and positioning of wind turbine blade tips for UAV-based automatic inspection[C]//IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 1374-1377.
[21] MOOLAN-FEROZE O, KARACHALIOS K, NIKOLAIDIS D N, et al. Simultaneous drone localisation and wind turbine model fitting during autonomous surface inspection[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macao: IEEE, 2019: 2014-2021.
[22] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2022-04-11].https://arxiv.org/abs/1804.02767.
[23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//European Conference on Computer Vision. Cham: Springer, 2014: 346-361.
[24] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[25] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 13024-13033.
相似文献/References:
[1]秦世引,潘宇雄,苏善伟.小型无人机编队飞行的控制律设计与仿真[J].智能系统学报,2009,4(3):218.
 QIN Shi-yin,PAN Yu-xiong,SU Shan-wei.Design and simulation of formation flight control laws for small unmanned aerial vehicles[J].CAAI Transactions on Intelligent Systems,2009,4():218.
[2]朱杰斌,秦世引.无人机编队飞行的分布式控制策略与控制器设计[J].智能系统学报,2010,5(5):392.[doi:10.3969/j.issn.1673-4785.2010.05.003]
 ZHU Jie-bin,QIN Shi-yin.Distributed control strategy and controller design for UAV formation flight[J].CAAI Transactions on Intelligent Systems,2010,5():392.[doi:10.3969/j.issn.1673-4785.2010.05.003]
[3]刘敏,邹杰,冯星,等.人工蜂群算法的无人机航路规划与平滑[J].智能系统学报,2011,6(4):344.
 LIU Min,ZOU Jie,FENG Xing,et al.Smooth trajectory planning of an unmanned aerial vehicleusing an artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2011,6():344.
[4]胡文超,孙新柱,陈孟元.音频感知哈希闭环检测的无人机仿生声呐SLAM算法研究[J].智能系统学报,2019,14(2):338.[doi:10.11992/tis.201708018]
 HU Wenchao,SUN Xinzhu,CHEN Mengyuan.Research on BATSLAM algorithm for UAV based on audio perceptual hash closed-loop detection[J].CAAI Transactions on Intelligent Systems,2019,14():338.[doi:10.11992/tis.201708018]
[5]徐魏超,王冠凌,陈孟元.无人机协助下基于SR-CKF的无线传感器网络节点定位研究[J].智能系统学报,2019,14(3):575.[doi:10.11992/tis.201709019]
 XU Weichao,WANG Guanling,CHEN Mengyuan.Node localization of wireless sensor networks based on SR-CKF assisted by unmanned aerial vehicles[J].CAAI Transactions on Intelligent Systems,2019,14():575.[doi:10.11992/tis.201709019]
[6]张飞,白伟,乔耀华,等.基于改进D*算法的无人机室内路径规划[J].智能系统学报,2019,14(4):662.[doi:10.11992/tis.201803031]
 ZHANG Fei,BAI Wei,QIAO Yaohua,et al.UAV indoor path planning based on improved D* algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():662.[doi:10.11992/tis.201803031]
[7]齐小刚,李博,范英盛,等.多约束下多无人机的任务规划研究综述[J].智能系统学报,2020,15(2):204.[doi:10.11992/tis.201811018]
 QI Xiaogang,LI Bo,FAN Yingsheng,et al.A survey of mission planning on UAVs systems based on multiple constraints[J].CAAI Transactions on Intelligent Systems,2020,15():204.[doi:10.11992/tis.201811018]
[8]吴莹莹,丁肇红,刘华平,等.面向环境探测的多智能体自组织目标搜索算法[J].智能系统学报,2020,15(2):289.[doi:10.11992/tis.201908023]
 WU Yingying,DING Zhaohong,LIU Huaping,et al.Self-organizing target search algorithm of multi-agent system for envi-ronment detection[J].CAAI Transactions on Intelligent Systems,2020,15():289.[doi:10.11992/tis.201908023]
[9]付昆,田金文,马懿超.多特征融合的异视角目标关联算法[J].智能系统学报,2020,15(5):847.[doi:10.11992/tis.202006037]
 FU Kun,TIAN Jinwen,MA Yichao.Target association from different perspectives based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15():847.[doi:10.11992/tis.202006037]
[10]段海滨,辛龙,邓亦敏.仿信鸽归巢行为的导航技术研究进展[J].智能系统学报,2021,16(1):1.[doi:10.11992/tis.202009049]
 DUAN Haibin,XIN Long,DENG Yimin.Technology research review on homing pigeon-inspired navigation[J].CAAI Transactions on Intelligent Systems,2021,16():1.[doi:10.11992/tis.202009049]

备注/Memo

收稿日期:2022-04-11。
作者简介:白健鹏,硕士研究生,主要研究方向为电力设备自主巡检;王巍,硕士研究生,主要研究方向为图像处理和电力视觉;焦嵩鸣,副教授,主要研究方向为机器人感知与控制、电力设备自主巡检
通讯作者:焦嵩鸣.E-mail:jiaosongming@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com