[1]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688-698.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(4):688-698.[doi:10.11992/tis.202204006]
点击复制

多重注意力指导下的异构图嵌入方法

参考文献/References:
[1] BILò D, FRIEDRICH T, LENZNER P, et al. Selfish creation of social networks[C]//The 35th AAAI Conference on Artificial Intelligence. Online: AAAI, 2021: 5185-5193.
[2] WANG Daixin, CUI Peng, ZHU Wenwu. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225?1234.
[3] GAO Yuan, LI Yi, SUN Yunchuan, et al. IEEE access special section: privacy preservation for large-scale user data in social networks[J]. IEEE access, 2022, 10: 4374–4379.
[4] SHEN Jiayi, WANG Haotao, GUI Shupeng, et al. UMEC: Unified model and embedding compression for efficient recommendation systems[C]//International Conference on Learning Representations. Addis Ababa:Ithaca, 2020:1-13.
[5] HAN Xiaotian, SHI Chuan, WANG Senzhang, et al. Aspect-level deep collaborative filtering via heterogeneous information networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3393?3399.
[6] HU Binbin, SHI Chuan, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1531?1540.
[7] SHI Chuan, LI Yitong, ZHANG Jiawei, et al. A survey of heterogeneous information network analysis[J]. IEEE transactions on knowledge and data engineering, 2017, 29(1): 17–37.
[8] ZHANG Yizhou, XIONG Yun, KONG Xiangnan, et al. Deep collective classification in heterogeneous information networks[C]//Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 399?408.
[9] CHEN Mingren, HUANG Ping, LIN Yu, et al. SSNE: effective node representation for link prediction in sparse networks[J]. IEEE access, 2021, 9: 57874–57885.
[10] TANG Fengqin, WANG Chunning, SU Jinxia, et al. Spectral clustering-based community detection using graph distance and node attributes[J]. Computational statistics, 2020, 35(1): 69–94.
[11] REN Xiang, LIU Jialu, YU Xiao, et al. ClusCite: effective citation recommendation by information network-based clustering[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2014: 821?830.
[12] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2014: 701?710.
[13] MIKOLOV T, CHEN KAI, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-01-16)[2022-04-04].https://arxiv.org/abs/1301.3781.
[14] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855?864.
[15] SHANG Jinbo, QU Meng, LIU Jialu, et al. Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[EB/OL].(2016?10?31)[2022?04?04]. https://arxiv.org/abs/1610.09769.
[16] DONG Yuxiao, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 135?144.
[17] WANG Xiao, JI Houye, SHI Chuan, et al. Heterogeneous graph attention network[C]//The World Wide Web Conference. New York: ACM, 2019: 2022–2032.
[18] FU Xinyu, ZHANG Jiani, MENG Ziqiao, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of The Web Conference 2020. New York: ACM, 2020: 2331?2341.
[19] HONG Huiting, GUO Hantao, LIN Yucheng, et al. An attention-based graph neural network for heterogeneous structural learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 4132-4139.
[20] ZHANG Chuxu, SONG Dongjin, HUANG Chao, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 793?803.
[21] CEN Yukuo, ZOU Xu, ZHANG Jianwei, et al. Representation learning for attributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1358?1368.
[22] LI Yujia, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[C]//The 4th International Conference on Learning Representations, Caribe Hilton, USA, 2016.
[23] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2009, 20(1): 61–80.
[24] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2005: 729?734.
[25] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016?09?09)[2022?04?04]. https://arxiv.org/abs/1609.02907.
[26] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025?1035.
[27] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017?10?31)[2022?04?04]. https://arxiv.org/abs/1710.10903.
[28] ZHANG Jiani, SHI Xingjian, XIE Junyuan, et al. Gaan: gated attention networks for learning on large and spatiotemporal graphs[C]//The Conference on Uncertainty in Artificial Intelligence. California: PMLR, 2018: 339?349 .
[29] SHI Chuan, HU Binbin, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE transactions on knowledge and data engineering, 2019, 31(2): 357–370.
[30] ZHOU Xiaohan, YI Yunhui, JIA Geng. Path-RotatE: knowledge graph embedding by relational rotation of path in complex space[C]// IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2021: 905?910.
[31] YANG Yaming, GUAN Ziyu, LI Jianxin, et al. Interpretable and efficient heterogeneous graph convolutional network[J]. IEEE transactions on knowledge and data engineering, 2023, 35(2): 1637–1650.
[32] PARK H, LEE S, HWANG D, et al. Learning augmentation for GNNs with consistency regularization[J]. IEEE access, 2021, 9: 127961–127972.
[33] YU Yue, CHEN Jie, GAO Tian, et al. DAG-GNN: DAG structure learning with graph neural networks[EB/OL]. (2019?04?22)[2022?04?04]. https://arxiv.org/abs/1904.10098.
[34] CHEN Zhengdao, VILLAR S, CHEN Lei, et al. On the equivalence between graph isomorphism testing and function approximation with GNNs[EB/OL]. (2019?05?29)[2022?04?04]. https://arxiv.org/abs/1905.12560.
[35] LIMA M, SILVA R, LOPES DE SOUZA MENDES F, et al. Inferring about fraudulent collusion risk on Brazilian public works contracts in official texts using a Bi-LSTM approach[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: Association for Computational Linguistics, 2020: 1580?1588.
[36] TANG Jian, QU Meng, WANG Mingzhe, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 1067?1077.
[37] YU Xie, CHENG Chen, GONG Maoguo, et al. Graph embedding via multi-scale graph representations[J]. Information sciences, 2021, 578: 102?115.
[38] LEE Mengyuan, YU Guanding, LI G Y. Graph embedding-based wireless link scheduling with few training samples[J]. IEEE transactions on wireless communications, 2021, 20(4): 2282–2294.
[39] VANDER M L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579–2605.

备注/Memo

收稿日期:2022-04-04。
基金项目:国家自然科学基金项目(61772249);辽宁省教育厅项目(LJKZ0355).
作者简介:孟祥福,教授,博士,主要研究方向为空间关键字查询、大数据分析与可视化、机器学习和推荐系统。主持国家自然科学基金项目20项,获授权发明专利1项。出版专著1部,发表学术论文50余篇;温晶,硕士研究生, 主要研究方向为图表示学习、图数据挖掘;李子函,硕士研究生,主要研究方向为知识图谱、图表示学习
通讯作者:孟祥福.E-mail:marxi@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com