[1]刘侠,吕志伟,王波,等.联合超声甲状腺结节分割与分类的多任务方法研究[J].智能系统学报,2023,18(4):764-774.[doi:10.11992/tis.202203063]
 LIU Xia,LYU Zhiwei,WANG Bo,et al.Multi-task method for segmentation and classification of thyroid nodules combined with ultrasound images[J].CAAI Transactions on Intelligent Systems,2023,18(4):764-774.[doi:10.11992/tis.202203063]
点击复制

联合超声甲状腺结节分割与分类的多任务方法研究

参考文献/References:
[1] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]. Cham: Springer International Publishing, 2015: 234?241.
[2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770?778.
[3] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132?7141.
[4] 吴俊霞, 强彦, 王梦南, 等. 基于条件分割对抗网络的超声甲状腺结节分割[J]. 太原理工大学学报, 2023,54(2):3920-398.
WU Junxia, QIANG Yan, WANG Mengnan, et al. Ultrasonic thyroid nodule segmentation based on segmentation adversarial network[J]. Journal of Taiyuan University of Technology, 2023,54(2):3920-398.
[5] 胡屹杉, 秦品乐, 曾建潮, 等. 基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络[J]. 计算机应用, 2021, 41(3): 891–897
HU Yishan, QIN Pinle, ZENG Jianchao, et al. Ultrasound thyroid segmentation network based on feature fusion and dynamic multi-scale dilated convolution[J]. Journal of computer applications, 2021, 41(3): 891–897
[6] 赵科甫, 张蕾. 基于卷积神经网络的甲状腺结节超声图像分割[J]. 现代计算机, 2021(15): 54–60
ZHAO Kefu, ZHANG Lei. Segmentation of thyroid nodules on ultrasound image using convolution neural network[J]. Modern computer, 2021(15): 54–60
[7] CHU Chen, ZHENG Jihui, ZHOU yong. Ultrasonic thyroid nodule detection method based on U-Net network[J]. Computer methods and programs in biomedicine, 2021, 199: 105906.
[8] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[EB/OL]. (2018?04?11)[2022?03?31].https://arxiv.org/abs/1804.03999.
[9] ZHOU Zongwei, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[M]. Cham: Springer International Publishing, 2018: 3?11.
[10] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Computer Vision - ECCV 2018: 15th European Conference. New York: ACM, 2018: 833-851.
[11] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481–2495.
[12] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261?2269.
[13] 迟剑宁, 于晓升, 张艺菲. 融合深度网络和浅层纹理特征的甲状腺结节癌变超声图像诊断[J]. 中国图象图形学报, 2018, 23(10): 1582–1593
CHI Jianning, YU Xiaosheng, ZHANG Yifei. Thyroid nodule malignantrisk detection in ultrasound image by fusing deep and texture features[J]. Journal of image and graphics, 2018, 23(10): 1582–1593
[14] 邹奕轩, 周蕾蕾, 赵紫婷, 等. 基于卷积神经网络的甲状腺结节超声图像良恶性分类研究[J]. 中国医学装备, 2020, 17(3): 9–13
ZOU Yixuan, ZHOU Leilei, ZHAO Ziting, et al. Study on the classification of benign and malignant thyroid nodule in ultrasound image on the basis of cnns[J]. China medical equipment, 2020, 17(3): 9–13
[15] MOUSSA O, KHACHNAOUI H, GUETARI R, et al. Thyroid nodules classification and diagnosis in ultrasound images using fine-tuning deep convolutional neural network[J]. International journal of imaging systems and technology, 2020, 30(1): 185–195.
[16] WEI Xi, GAO Ming, YU Ruiguo, et al. Ensemble deep learning model for multicenter classification of thyroid nodules on ultrasound images[J]. Med sci monit, 2020, 26: e926096.
[17] XIE Jiahao, GUO Lehang, ZHAO Chongke, et al. A hybrid deep learning and handcrafted features based approach for thyroid nodule classification in ultrasound images[J]. Journal of physics:conference series, 2020, 1693(1): 012160.
[18] SHI Guohua, WANG Jiawen, QIANG yan, et al. Knowledge-guided synthetic medical image adversarial augmentation for ultrasonography thyroid nodule classification[J]. Computer methods and programs in biomedicine, 2020, 196: 105611.
[19] SHEN Xueda, OUYANG Xi, LIU Tianjiao, et al. Cascaded networks for thyroid nodule diagnosis from ultrasound images[M]. Cham: Springer International Publishing, 2021: 145?154.
[20] AMYAR A, MODZELEWSKI R, LI H, et al. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: classification and segmentation[J]. Computers in biology and medicine, 2020, 126: 104037.
[21] KIM S J, KIM H S. Multi-tasking U-net based paprika disease diagnosis[J]. Korean institute of smart media, 2020, 9(1): 16–22.
[22] CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482?7491.
[23] WU Yuhuan, GAO Shanghua, MEI Jie, et al. JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2021, 30: 3113–3126.
[24] 叶剑锋, 徐轲, 熊峻峰, 等. 基于注意力机制和辅助任务的语义分割算法[J]. 计算机工程, 2021, 47(9): 203–209,216
YE Jianfeng, XU Ke, XIONG Junfeng, et al. Semantic segmentation algorithm based on attention mechanism and auxiliary task[J]. Computer engineering, 2021, 47(9): 203–209,216
[25] LYU Kejie, LI Yingming, ZHANG Zhongfei. Attention-aware multi-task convolutional neural networks[J]. IEEE transactions on image processing, 2020, 29: 1867–1878.
[26] MEHTA S, MERCAN E, BARTLETT J, et al. Y-net: joint segmentation and classification for diagnosis of breast biopsy images[M]. Cham: Springer International Publishing, 2018: 893?901.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2022-03-31。
基金项目:国家自然科学基金项目(61172167);黑龙江省青年科学基金项目(QC2017076);广东省教育厅青年创新人才类项目(2019GKQNCX043) ;广东省教育厅普通高校特色创新项目(2019GKTSCX029);广东省普通高校创新团队项目(2021KCXTD079).
作者简介:刘侠,教授,主要研究方向为医学图像处理、生物特征识别。主持国家自然科学基金项目2项、黑龙江省自然科学基金项目2项,授权发明专利3项。发表学术论文40余篇。;吕志伟,硕士研究生,主要研究方向为医学图像分割和机器学习;王波,副教授,主要研究方向为模式识别、医学图像分析与处理、计算机视觉。主持或参与国家自然科学基金项目、黑龙江省自然科学基金项目等5项。发表学术论文30余篇
通讯作者:王波.E-mail:hust_wb@hrbust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com