[1]于润羽,李雅文,李昂.融合领域特征的科技学术会议语义相似性计算方法[J].智能系统学报,2022,17(4):737-743.[doi:10.11992/tis.202203050]
 YU Runyu,LI Yawen,LI Ang.Semantic similarity computing for scientific and technological conferences[J].CAAI Transactions on Intelligent Systems,2022,17(4):737-743.[doi:10.11992/tis.202203050]
点击复制

融合领域特征的科技学术会议语义相似性计算方法

参考文献/References:
[1] 周园春, 王卫军, 乔子越, 等. 科技大数据知识图谱构建方法及应用研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 957?987.
ZHOU Yuanchun, WANG Weijun, QIAO Ziyue, et al. A survey on the construction methods and applications of sci-tech big data knowledge graph[J]. Scientia sinica (informationis), 2020, 50(7): 957?987.
[2] 苏晓娟, 张英杰, 白晨, 等. 科技大数据背景下的中英双语语料库的构建及其特点研究[J]. 中国科技资源导刊, 2019, 51(6): 87?92.
SU Xiaojuan, ZHANG Yingjie, BAI Chen, et al. Research of bilingual corpus construction and its characteristics in big data[J]. China science & technology resources review, 2019, 51(6): 87?92.
[3] 胡吉颖, 谢靖, 钱力, 等. 基于知识图谱的科技大数据知识发现平台建设[J]. 数据分析与知识发现, 2019, 3(1): 55?62.
HU Jiying, XIE Jing, QIAN Li, et al. Constructing big data platform for sci-tech knowledge discovery with knowledge graph[J]. Data analysis and knowledge discovery, 2019, 3(1): 55?62.
[4] TONG Yuqiang, GU Lize. A news text clustering method based on similarity of text labels[M]//Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer International Publishing, 2019: 496-503.
[5] LI Wenling, JIA Yingmin, DU Junping, et al. Distributed multiple-model estimation for simultaneous localization and tracking with NLOS mitigation[J]. IEEE transactions on vehicular technology, 2013, 62(6): 2824–2830.
[6] DAS A, MANDAL J, DANIAL Z, et al. A novel approach for automatic Bengali question answering system using semantic similarity analysis[J]. International journal of speech technology, 2020, 23(4): 873–884.
[7] FANG Yuke, DENG Weihong, DU Junping, et al. Identity-aware CycleGAN for face photo-sketch synthesis and recognition[J]. Pattern recognition, 2020, 102: 107249.
[8] QIAN Ming, LIU J, LI Chaofeng, et al. A comparative study of English-Chinese translations of court texts by machine and human translators and the Word2Vec based similarity measure’s ability to gauge human evaluation biases[C]//Proceedings of Machine Translation Summit XVII Volume 2: Translator, Project and User Tracks. Dublin: ACL, 2019: 95?100.
[9] XUE Zhe, DU Junping, DU Dawei, et al. Deep low-rank subspace ensemble for multi-view clustering[J]. Information sciences, 2019, 482: 210–227.
[10] RISTAD E S, YIANILOS P N. Learning string-edit distance[J]. IEEE transactions on pattern analysis and machine intelligence, 1998, 20(5): 522–532.
[11] HU Weiming, GAO Jun, LI Bing, et al. Anomaly detection using local kernel density estimation and context-based regression[J]. IEEE transactions on knowledge and data engineering, 2020, 32(2): 218–233.
[12] SUPHAKIT Niwattanakul, JATSADA Singthongchai, EKKACHAI Naenudorn, et al. Using of Jaccard coefficient for keywords similarity[C]//Proceedings of the international multiconference of engineers and computer scientists. Hong Kong: Newswood Limited, 2013, 1(6): 380?384.
[13] KOU Feifei, DU Junping, HE Yijiang, et al. Social network search based on semantic analysis and learning[J]. CAAI transactions on intelligence technology, 2016, 1(4): 293–302.
[14] LI Wenling, JIA Yingmin, DU Junping. Variance-constrained state estimation for nonlinearly coupled complex networks[J]. IEEE transactions on cybernetics, 2018, 48(2): 818–824.
[15] MIKOLOV T, CHEN KAI, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. New York: arXiv, 2013. (2013?01?16) [2022?03?24]. https: //arxiv. org/abs/1301.3781.
[16] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532?1543.
[17] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[EB/OL]. New York: arXiv, 2018. (2018?03?22)[2020?07?01]. https://arxiv.org/abs/1802.05365.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000?6010.
[19] RADFORD A, NARASIMHAN K. Improving language understanding by generative pre-training[EB/OL]. (2018?11?05)[2020?07?01].https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035.
[20] DEVLIN J, CHANG MING-WEI, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. New York: arXiv, 2018. (2018?10?11)[2022?03?20]. https: //arxiv. org/abs/1810.04805.
[21] HUANG Posen, HE Xiaodong, GAO Jianfeng, et al. Learning deep structured semantic models for web search using clickthrough data[C]//CIKM’13: Proceedings of the 22nd ACM international conference on Information & Knowledge Management. New York: ACM, 2013: 2333?2338.
[22] PALANGI H, DENG L, SHEN Y, et al. Semantic modelling with long-short-term memory for information retrieval[EB/OL]. New York: arXiv, 2014. (2014?12?20) [2022?03?20].https://arxiv.org/abs/1412.6629.
[23] PONTES E L, HUET S, LINHARES A C, et al. Predicting the semantic textual similarity with Siamese CNN and LSTM[EB/OL]. New York: arXiv, 2018. (2018?10?24) [2022?03?20]. https: //arxiv. org/abs/1810.10641.
[24] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[EB/OL]. New York: arXiv, 2019. (2019?08?27) [2022?03?20]. https: //arxiv. org/abs/1908.10084.
[25] LI BOHAN, ZHOU HAO, HE JUNXIAN, et al. On the sentence embeddings from pre-trained language models[EB/OL]. New York: arXiv, 2020. (2020?11?02) [2022?03?20]. https: //arxiv. org/abs/2011.05864.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2022-03-24。
基金项目:国家重点研发计划项目(2018YFB1402600);国家自然科学基金项目(61772083,61802028);广西科技重大专项(桂科AA18118054)
作者简介:于润羽,硕士研究生,主要研究方向为深度学习、数据挖掘;李雅文,副教授,主要研究方向为企业创新、人工智能、大数据;李昂,博士研究生,主要研究方向为信息检索、数据挖掘、机器学习
通讯作者:李雅文. E-mail:warmly0716@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com