[1]朱金侠,孟祥福,邢长征,等.融合图卷积注意力机制的协同过滤推荐方法[J].智能系统学报,2023,18(6):1295-1304.[doi:10.11992/tis.202203039]
ZHU Jinxia,MENG Xiangfu,XING Changzheng,et al.Collaborative filtering recommendation approach fused with graph convolutional attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(6):1295-1304.[doi:10.11992/tis.202203039]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第6期
页码:
1295-1304
栏目:
学术论文—人工智能基础
出版日期:
2023-11-05
- Title:
-
Collaborative filtering recommendation approach fused with graph convolutional attention mechanism
- 作者:
-
朱金侠, 孟祥福, 邢长征, 张霄雁
-
辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105
- Author(s):
-
ZHU Jinxia, MENG Xiangfu, XING Changzheng, ZHANG Xiaoyan
-
School of Electronics and Information Engineering, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
图嵌入技术; 图卷积神经网络; 注意力机制; 协同过滤; 用户偏好; 协同过滤; 高阶交互; 邻域聚合
- Keywords:
-
graph embedding technology; graph convolutional network; attention mechanism; collaborative filtering; user preference; collaborative filtering; high-order interaction; neighbor aggregation
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.202203039
- 摘要:
-
图卷积神经网络(graph convolutional neural network, GCN)因其强大的建模能力引起了广泛关注,在商品推荐中,现有的图卷积协同过滤技术忽略了邻居节点在传播聚合过程中的重要性,使得用户和商品的嵌入向量表达不够合理。为了解决这一问题,本文提出一种融合图卷积注意力机制的协同过滤推荐模型。首先通过图嵌入技术将用户-项目的交互信息映射到低维稠密的向量空间;其次通过堆叠多层的图卷积网络学习用户与项目间的高阶交互信息;同时融合注意力机制为邻居节点自适应地分配权重,不仅可以捕获更具代表性的邻居影响,还使得在聚合邻居节点的特征信息时,仅依赖于节点之间的特征表达,使其独立于图结构,提高了模型的泛化能力;最后设计了分层聚合函数,将图卷积层学习到的多个嵌入向量加权聚合,使用内积函数得到用户-项目之间的关联分数。在3个真实数据上进行的泛化实验,实验结果验证了该方法的有效性。
- Abstract:
-
The graph convolutional neural network (GCN) has attracted extensive attention due to its powerful modeling capabilities. In item recommendation, existing graph convolution collaborative filtering techniques ignore the importance of neighbor nodes in the propagation aggregation process, making the embedding vector representation of user and item unreasonable. Therefore, this paper proposes a collaborative filtering recommendation model fused with graph convolutional attention to address this problem. First, user-item interaction information was mapped to a low-dimensional, dense vector space using graph embedding techniques. Further, the high-order interaction information between the user and the item was learned using stacking multiple layers of GCN. The model also fused attention mechanisms to adaptively assign weights to neighbor nodes, thereby capturing the influence of highly representative neighbors. Simultaneously, the model could rely only on feature expressions between nodes when aggregating feature information from neighboring nodes, increasing the independence of the graph structure and improving the generalization capability of the model. Finally, a hierarchical aggregation function that aggregated multiple embedding vectors, which was learned from the graph convolution layer by weighting, was designed, and the inner product function was used to obtain the association score between the user and the item. Results of the extensive experiments conducted on three real datasets have demonstrated the effectiveness of the proposed approach.
备注/Memo
收稿日期:2022-3-22。
基金项目:国家重点研发计划项目(2018YFB1402901 );国家自然科学基金项目(61772249);辽宁省教育厅一般项目(LJ2019QL017).
作者简介:朱金侠,硕士研究生,主要研究方向为推荐系统;孟祥福,教授,博士,主要研究方向为Web数据库top-k查询、空间数据管理、推荐系统和大数据可视化。主持国家自然科学基金2 项,主持辽宁省各类基金项目3 项。发表学术论文60余篇, 出版学术专著1 部。;邢长征,教授,主要研究方向为分布式数据库与数据管理、流聚类、推荐系统。主持国家重点研发计划项目子课题任务1 项,省部级科研项目3 项,矿山安全应用类课题10 余项。获辽宁省优秀教学成果一等奖1 项。发表学术论文40 余篇,编写出版教材3 部。
通讯作者:孟祥福.E-mail:marxi@126.com
更新日期/Last Update:
1900-01-01