[1]朱金侠,孟祥福,邢长征,等.融合图卷积注意力机制的协同过滤推荐方法[J].智能系统学报,2023,18(6):1295-1304.[doi:10.11992/tis.202203039]
 ZHU Jinxia,MENG Xiangfu,XING Changzheng,et al.Collaborative filtering recommendation approach fused with graph convolutional attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(6):1295-1304.[doi:10.11992/tis.202203039]
点击复制

融合图卷积注意力机制的协同过滤推荐方法

参考文献/References:
[1] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295.
[2] AMBULGEKAR H P, PATHAK M K, KOKARE M B. A survey on collaborative filtering: tasks, approaches and applications[C]//Proceedings of International Ethical Hacking Conference 2018. Singapore: Springer, 2019: 289-300.
[3] SUN Guangfu, WU Le, LIU Qi, et al. Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of software, 2014, 24(11): 2721–2733.
[4] HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182.
[5] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[C]//IEEE Signal Processing Magazine. New York: IEEE, 2013: 83-98.
[6] YING R, HE Ruining, CHEN Kaifeng, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983.
[7] WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
[8] HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
[9] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer journal, 2009, 42(8): 30–37.
[10] KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 426-434.
[11] HE Xiangnan, DU Xiaoyu, WANG Xiang, et al. Outer product-based neural collaborative filtering[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 2227-2233.
[12] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
[13] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[14] GORI M, PUCCI A. ItemRank: a random-walk based scoring algorithm for recommender engines[C]//Proceedings of the 20th International Joint Conference on Artificial Intelligence. New York: ACM, 2007: 2766-2771.
[15] CHEN C M, TSAI M F, LIN Y C, et al. Query-based music recommendations via preference embedding[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 79-82.
[16] YANG J H, CHEN C M, WANG Chuanju, et al. HOP-rec: high-order proximity for implicit recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 140-144.
[17] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025-1035.
[18] XU Yanan, ZHU Yanmin, SHEN Yanyan, et al. Learning shared vertex representation in heterogeneous graphs with convolutional networks for recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2019: 4620-4626.
[19] PETAR V, GUILLEM C, ARANTXA C, et al. Graph attention networks[C]//Proceedings of International Conference on Learning Representations. Vancouver: ICLR, 2018, 23-35.
[20] 王宏琳, 杨丹, 聂铁铮, 等. 自注意力机制的属性异构信息网络嵌入的商品推荐[J]. 计算机研究与发展, 2022, 59(7): 1509–1521
WANG Honglin, YANG Dan, NIE Tiezheng, et al. Attributed heterogeneous information network embedding with self-attention mechanism for product recommendation[J]. Journal of computer research and development, 2022, 59(7): 1509–1521
[21] LIU Donghua, LI Jing, DU Bo, et al. DAML: dual attention mutual learning between ratings and reviews for item recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 344-352.
[22] 高海燕, 毛林, 窦凯奇, 等. 基于图嵌入模型的协同过滤推荐算法[J]. 数据采集与处理, 2020, 35(3): 483–493
GAO Haiyan, MAO Lin, DOU Kaiqi, et al. Graph embedding model based collaborative filtering algorithm[J]. Journal of data acquisition and processing, 2020, 35(3): 483–493
[23] 邢长征, 赵宏宝, 张全贵, 等. 融合评论文本层级注意力和外积的推荐方法[J]. 计算机科学与探索, 2020, 14(6): 947–957
XING Changzheng, ZHAO Hongbao, ZHANG Quangui, et al. Review text hierarchical attention and outer product for recommendation method[J]. Journal of frontiers of computer science and technology, 2020, 14(6): 947–957
[24] MAAS A L. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of International Conference on Machine Learning. New York: ACM, 2013, 28-34.
[25] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2009: 452-461.
[26] VAN DEN BERG R, KIPF T, WELLING M. Graph convolutional matrix completion[C]// Proceedings of Computing Research Repository. New York: ACM, 2017, 1706-02263.
[27] KINGMA D, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the International Conference on Learning Representations. San Diego: ICLR, 2015, 1412-1427.
相似文献/References:
[1]钟秋波,郑彩明,朴松昊.时空域融合的骨架动作识别与交互研究[J].智能系统学报,2020,15(3):601.[doi:10.11992/tis.202006029]
 ZHONG Qiubo,ZHENG Caiming,PIAO Songhao.Research on skeleton-based action recognition with spatiotemporal fusion and human–robot interaction[J].CAAI Transactions on Intelligent Systems,2020,15():601.[doi:10.11992/tis.202006029]
[2]刘威,王薪予,刘光伟,等.融合关系特征的半监督图像分类方法研究[J].智能系统学报,2022,17(5):886.[doi:10.11992/tis.202109022]
 LIU Wei,WANG Xinyu,LIU Guangwei,et al.Semi-supervised image classification method fused with relational features[J].CAAI Transactions on Intelligent Systems,2022,17():886.[doi:10.11992/tis.202109022]
[3]陈容珊,高淑萍,齐小刚.注意力机制和图卷积神经网络引导的谱聚类方法[J].智能系统学报,2023,18(5):936.[doi:10.11992/tis.202208041]
 CHEN Rongshan,GAO Shuping,QI Xiaogang.A spectral clustering based on GCNs and attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():936.[doi:10.11992/tis.202208041]
[4]周贤琛,马扬,程光权,等.战场目标实体类型识别的鲁棒图神经网络方法[J].智能系统学报,2023,18(6):1156.[doi:10.11992/tis.202111025]
 ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18():1156.[doi:10.11992/tis.202111025]
[5]曹汉童,陈璟.融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165.[doi:10.11992/tis.202212029]
 CAO Hantong,CHEN Jing.Prediction of multitype protein interactions combining Doc2vec and GCN[J].CAAI Transactions on Intelligent Systems,2023,18():1165.[doi:10.11992/tis.202212029]

备注/Memo

收稿日期:2022-3-22。
基金项目:国家重点研发计划项目(2018YFB1402901 );国家自然科学基金项目(61772249);辽宁省教育厅一般项目(LJ2019QL017).
作者简介:朱金侠,硕士研究生,主要研究方向为推荐系统;孟祥福,教授,博士,主要研究方向为Web数据库top-k查询、空间数据管理、推荐系统和大数据可视化。主持国家自然科学基金2 项,主持辽宁省各类基金项目3 项。发表学术论文60余篇, 出版学术专著1 部。;邢长征,教授,主要研究方向为分布式数据库与数据管理、流聚类、推荐系统。主持国家重点研发计划项目子课题任务1 项,省部级科研项目3 项,矿山安全应用类课题10 余项。获辽宁省优秀教学成果一等奖1 项。发表学术论文40 余篇,编写出版教材3 部。
通讯作者:孟祥福.E-mail:marxi@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com