[1]魏旋旋,黄子健,曹乐,等.采用轻量级姿态估计网络的脊柱侧弯筛查方法[J].智能系统学报,2023,18(5):1039-1046.[doi:10.11992/tis.202203038]
 WEI Xuanxuan,HUANG Zijian,CAO Le,et al.Scoliosis screening method using lightweight pose estimation network[J].CAAI Transactions on Intelligent Systems,2023,18(5):1039-1046.[doi:10.11992/tis.202203038]
点击复制

采用轻量级姿态估计网络的脊柱侧弯筛查方法

参考文献/References:
[1] 宋艳萍, 姚娜, 沈效平, 等. 功能性训练结合脊柱定点旋转复位法治疗青少年特发性脊柱侧弯的临床研究[J]. 实用医技杂志, 2021, 28(7): 924-926
SONG Yanping, YAO Na, SHEN Xiaoping, et al. Clinical study of functional training combined with spinal fixed-point rotation reduction in the treatment of idiopathic scoliosis in adolescents[J]. Journal of practical medical techniques, 2021, 28(7): 924-926
[2] PINHEIRO A P, COELHO J C, VEIGA A C P, et al. A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images[J]. Computer methods and programs in biomedicine, 2018, 161: 85-92.
[3] KOTWICKI T, NEGRINI S, GRIVAS T B, et al. Methodology of evaluation of morphology of the spine and the trunk in idiopathic scoliosis and other spinal deformities-6th SOSORT consensus paper[J]. Scoliosis, 2009, 4(1): 1-16.
[4] JIANG Weiwei, ZHOU Guangquan, LAI Kalee, et al. A fast 3-D ultrasound projection imaging method for scoliosis assessment[J]. Mathematical biosciences and engineering, 2019, 16(2): 1067-1081.
[5] KOKABU T, KAWAKAMI N, UNO K, et al. Three-dimensional depth sensor imaging to identify adolescent idiopathic scoliosis: a prospective multicenter cohort study[J]. Scientific reports, 2019, 9: 9678.
[6] YANG Junlin, ZHANG Kai, FAN Hengwei, et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J]. Communications biology, 2019, 2: 390.
[7] 周燕, 刘紫琴, 曾凡智, 等. 深度学习的二维人体姿态估计综述[J]. 计算机科学与探索, 2021, 15(4): 641-657
ZHOU Yan, LIU Ziqin, ZENG Fanzhi, et al. Survey on two-dimensional human pose estimation of deep learning[J]. Journal of frontiers of computer science and technology, 2021, 15(4): 641-657
[8] WEI Shihen, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4724?4732.
[9] SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 5686?5696.
[10] NEWELL A, YANG Kaiyu, DENG Jia. Stacked hourglass networks for human pose estimation[C]//European Conference on Computer Vision. Cham: Springer, 2016: 483?499.
[11] ZHAO Lin, WANG Nannan, GONG Chen, et al. Estimating human pose efficiently by parallel pyramid networks[J]. IEEE transactions on image processing, 2021, 30: 6785-6800.
[12] ZHAO Lin, XU Jie, GONG Chen, et al. Learning to acquire the quality of human pose estimation[J]. IEEE transactions on circuits and systems for video technology, 2021, 31(4): 1555-1568.
[13] OSOKIN D. Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose[EB/OL]. (2018?11?29)[2022?03?21].https://arxiv.org/abs/1811.12004.
[14] LUO Youtao, GAO Xiaoming. Lightweight human pose estimation based on self-attention mechanism[J]. Advances in engineering technology research, 2023, 4(1): 253-253.
[15] REN Haopan, WANG Wenming, ZHANG Kaixiang, et al. Fast and lightweight human pose estimation[J]. IEEE access, 2021, 9: 49576-49589.
[16] BAZAREVSKY V, GRISHCHENKO I, RAVEENDRAN K, et al. BlazePose: on-device real-time body pose tracking[EB/OL]. (2020?06?17)[2022?03?21]. https://arxiv.org/abs/2006.10204.
[17] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 1314-1324.
[18] 渠涵冰, 贾振堂. 轻量级高分辨率人体姿态估计研究[J]. 激光与光电子学进展, 2022, 59(18): 119-126
QU Hanbing, JIA Zhentang. Lightweight and high-resolution human pose estimation method[J]. Laser & optoelectronics progress, 2022, 59(18): 119-126
[19] 马甜甜, 杨长春, 严鑫杰, 等. 融合知识图谱和轻量级图卷积网络推荐系统的研究[J]. 智能系统学报, 2022, 17(4): 721-727
MA Tiantian, YANG Changchun, YAN Xinjie, et al. Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J]. CAAI transactions on intelligent systems, 2022, 17(4): 721-727
[20] 白健鹏, 王巍, 陈雨溪, 等. 基于轻量型YOLOv5的风机桨叶检测与空间定位[J]. 智能系统学报, 2022, 17(6): 1173-1181
BAI Jianpeng, WANG Wei, CHEN Yuxi, et al. Detection and spatial location of wind turbine blades based on lightweight YOLOv5[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1173-1181
[21] RAMIREZ L, DURDLE N G, RASO V J, et al. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography[J]. IEEE transactions on information technology in biomedicine, 2006, 10(1): 84-91.
[22] SEOUD L, ADANKON M M, LABELLE H, et al. Prediction of scoliosis curve type based on the analysis of trunk surface topography[C]//2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Rotterdam: IEEE, 2010: 408?411.
[23] SUN Haoliang, ZHEN Xiantong, BAILEY C, et al. Direct estimation of spinal Cobb angles by structured multi-output regression[C]//International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017: 529?540.
[24] ZHANG Junhua, LI Hongjian, LV Liang, et al. Computer-aided Cobb measurement based on automatic detection of vertebral slopes using deep neural network[J]. International journal of biomedical imaging, 2017, 2017: 1-6.
[25] WANG Liansheng, XU Qiuhao, LEUNG S, et al. Accurate automated Cobb angles estimation using multi-view extrapolation net[J]. Medical image analysis, 2019, 58: 101542.
[26] PAN Yaling, CHEN Qiaoran, CHEN Tongtong, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays[J]. European spine journal, 2019, 28(12): 3035-3043.
[27] TAN Zhiqiang, YANG Kai, SUN Yu, et al. An automatic scoliosis diagnosis and measurement system based on deep learning[C]//2018 IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur: IEEE, 2019: 439?443.
[28] TAN Z Q. Algorithmic study of Lenke classification of idiopa-thic scoliosis based on U-net[M]. Shenzhen: University of Chinese Academy of Sciences ( Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), 2019.
[29] EICHNER M, FERRARI V, ZURICH S. Better appearance models for pictorial structures[C]//Proc British Machine Vision Conference, London, 2009: 5.
[30] 中华人民共和国国家卫生和计划生育委员会. 中国标准书号: GB/T16133-2014, 儿童青少年脊柱弯曲异常的筛查[S]. 北京: 中国标准出版社, 2014.
相似文献/References:
[1]高尚兵,黄子赫,耿璇,等.视觉协同的违规驾驶行为分析方法[J].智能系统学报,2021,16(6):1158.[doi:10.11992/tis.202101024]
 GAO Shangbing,HUANG Zihe,GENG Xuan,et al.A visual collaborative analysis method for detecting illegal driving behavior[J].CAAI Transactions on Intelligent Systems,2021,16():1158.[doi:10.11992/tis.202101024]

备注/Memo

收稿日期:2022-3-21。
基金项目:国家自然科学基金项目(61703270);上海市高水平应用技术大学创新平台建设项目.
作者简介:魏旋旋,硕士研究生,主要研究方向为面向大众健康监测的人体姿态评估方法;黄子健,硕士研究生,主要研究方向为人体姿态估计与健康评价方法;方宇,教授,博士,主要研究方向为智能辅助医疗与健康状态评价技术。授权发明专利10余项。近年来荣获上海市科学技术进步奖、中国技术市场协会金桥奖等科技奖励,发表学术论文20余篇。
通讯作者:方宇.E-mail:fangyu_hit@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com