[1]姜文涛,孟庆姣.自适应时空正则化的相关滤波目标跟踪[J].智能系统学报,2023,18(4):754-763.[doi:10.11992/tis.202202030]
 JIANG Wentao,MENG Qingjiao.Correlation filter tracking for adaptive spatiotemporal regularization[J].CAAI Transactions on Intelligent Systems,2023,18(4):754-763.[doi:10.11992/tis.202202030]
点击复制

自适应时空正则化的相关滤波目标跟踪

参考文献/References:
[1] 李馨, 赵加清, 张征明, 等. 基于数字图像相关的自适应应变场计算[J]. 光学学报, 2021, 41(23): 125–132
LI Xin, ZHAO Jiaqing, ZHANG Zhengming, et al. Self-adaptive strain field calculation based on digital image correlation[J]. Acta optica sinica, 2021, 41(23): 125–132
[2] 刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39(6): 242–255
LIU Wanjun, SUN Hu, JIANG Wentao. Correlation filter tracking algorithm for adaptive feature selection[J]. Acta optica sinica, 2019, 39(6): 242–255
[3] 孙德刚, 肖媛媛, 尹艳华, 等. 多特征联合时空正则化相关滤波目标跟踪鲁棒算法[J]. 机床与液压, 2021, 49(22): 67–75
SUN Degang, XIAO Yuanyuan, YIN Yanhua, et al. Correlation filtering target tracking algorithm with multi-feature joint spatio-temporal regularization[J]. Machine tool & hydraulics, 2021, 49(22): 67–75
[4] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544?2550.
[5] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision. Berlin: Springer, 2012: 702?715.
[6] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3): 583–596.
[7] DANELLJAN M, H?GER G, SHAHBAZ KHAN F, et al. Accurate scale estimation for robust visual tracking[C]// Proceedings of the British Machine Vision Conference. Nottingham: BMVA Press, 2014.
[8] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1401?1409.
[9] GALOOGAHI H K, SIM T, LUCEY S. Correlation filters with limited boundaries[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 4630?4638.
[10] DANELLJAN M, H?GER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]//2015 IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2016: 621?629.
[11] MUELLER M, SMITH N, GHANEM B. Context-aware correlation filter tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1387?1395.
[12] LI Feng, TIANG Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4904–4913.
[13] HUANG Ziyuan, FU Changhong, LI Yiming, et al. Learning aberrance repressed correlation filters for real-time UAV tracking[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 2891?2900.
[14] 韦联福. 再谈拉格朗日函数非唯一性的物理意义: 广义规范变换和正则变换的等价性证明[J]. 物理与工程, 2021, 31(2): 31–35,40
WEI Lianfu. Remarks on the non-uniqueness of Lagrange function: an equivalence proof between the gauge and canonical transformations[J]. Physics and engineering, 2021, 31(2): 31–35,40
[15] 姜文涛, 刘晓璇, 涂潮, 等. 自适应空间异常的目标跟踪[J]. 电子与信息学报, 2022, 44(2): 523–533
JIANG Wentao, LIU Xiaoxuan, TU Chao, et al. Adaptive spatial and anomaly target tracking[J]. Journal of electronics & information technology, 2022, 44(2): 523–533
[16] 孙丽君, 黄志远, 陈天飞. 基于傅里叶变换的Gamma因子快速自标定方法[J]. 光学学报, 2021, 41(24): 116–127
SUN Lijun, HUANG Zhiyuan, CHEN Tianfei. Fast self-calibration method of gamma factor based on Fourier transform[J]. Acta optica sinica, 2021, 41(24): 116–127
[17] 李文健, 盖绍彦, 俞健, 等. 基于卷积神经网络的单帧复合图像绝对相位恢复[J]. 光学学报, 2021, 41(23): 113–124
LI Wenjian, GAI Shaoyan, YU Jian, et al. Absolute phase recovery of single frame composite image based on convolutional neural network[J]. Acta optica sinica, 2021, 41(23): 113–124
[18] 高宇, 夏志明, 刘欢. 非线性二维主成分分析方法[J]. 纯粹数学与应用数学, 2021, 37(4): 475–492
GAO Yu, XIA Zhiming, LIU Huan. Two-dimensional nonlinear principal component analysis: a nonlinear information compression method[J]. Pure and applied mathematics, 2021, 37(4): 475–492
[19] 梁霄, 李家炜, 赵小龙, 等. 基于深度学习的红外目标成像液位检测方法[J]. 光学学报, 2021, 41(21): 104–112
LIANG Xiao, LI Jiawei, ZHAO Xiaolong, et al. Infrared target imaging liquid level detection method based on deep learning[J]. Acta optica sinica, 2021, 41(21): 104–112
[20] 刘宗达, 董立泉, 赵跃进, 等. 视频中快速运动目标的自适应模型跟踪算法[J]. 光学学报, 2021, 41(18): 164–173
LIU Zongda, DONG Liquan, ZHAO Yuejin, et al. Adaptive model tracking algorithm for fast-moving targets in video[J]. Acta optica sinica, 2021, 41(18): 164–173
[21] 李天雄, 侯茂盛, 李丽娟, 等. 基于特征自适应的激光扫描投影图形控制点提取及优化方法[J]. 光学学报, 2021, 41(24): 98–109
LI Tianxiong, HOU Maosheng, LI Lijuan, et al. Control point extraction and optimization method of laser scanning projection graphics based on feature adaptation[J]. Acta optica sinica, 2021, 41(24): 98–109
[22] 尹宝才, 张超辉, 胡永利, 等. 基于图嵌入的自适应多视降维方法[J]. 智能系统学报, 2021, 16(5): 963–970
YIN Baocai, ZHANG Chaohui, HU Yongli, et al. An adaptive multi-view dimensionality reduction method based on graph embedding[J]. CAAI transactions on intelligent systems, 2021, 16(5): 963–970
[23] 王德文, 魏波涛. 基于孪生变分自编码器的小样本图像分类方法[J]. 智能系统学报, 2021, 16(2): 254–262
WANG Dewen, WEI Botao. A small-sample image classification method based on a Siamese variational auto-encoder[J]. CAAI transactions on intelligent systems, 2021, 16(2): 254–262
[24] 崔铁军, 李莎莎. 基于因素空间的人工智能样本选择策略[J]. 智能系统学报, 2021, 16(2): 346–352
CUI Tiejun, LI Shasha. Sample selection strategy of artificial intelligence based on factor space[J]. CAAI transactions on intelligent systems, 2021, 16(2): 346–352
[25] 石昌友, 孙强, 卢建平, 等. 基于深度融合卷积神经网络的图像边缘检测[J]. 现代电子技术, 2022, 45(24): 141–144
SHI Chagyou, SUN Qiang, LU Jianping, et al. Image edge detection based on deep fusion convolution neural network[J]. Modern electronic technology, 2022, 45(24): 141–144

备注/Memo

收稿日期:2022-02-28。
基金项目:国家自然科学基金项目(61172144);辽宁省自然科学基金项目(20170540426);辽宁省教育厅基金项目(LJYL049).
作者简介:姜文涛,副教授,博士,主要研究方向为图像与视觉计算、模式识别与人工智能。主持国家自然科学基金项目2项,发表学术论文20余篇;孟庆姣,硕士硕士生,主要研究方向为图像与视觉计算、模式识别与人工智能
通讯作者:姜文涛.E-mail:704123343@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com