[1]李伯涵,郭茂祖,赵玲玲.基于分割注意力机制残差网络的城市区域客流量预测[J].智能系统学报,2022,17(4):839-848.[doi:10.11992/tis.202202014]
LI Bohan,GUO Maozu,ZHAO Lingling.Passenger flow prediction in urban areas based on residual networks with split attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(4):839-848.[doi:10.11992/tis.202202014]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第4期
页码:
839-848
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2022-07-05
- Title:
-
Passenger flow prediction in urban areas based on residual networks with split attention mechanism
- 作者:
-
李伯涵1,2, 郭茂祖1,2, 赵玲玲3
-
1. 北京建筑大学 电气与信息工程学院,北京 100044;
2. 北京建筑大学 建筑大数据智能处理方法研究北京市重点实验室,北京 100044;
3. 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001
- Author(s):
-
LI Bohan1,2, GUO Maozu1,2, ZHAO Lingling3
-
1. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
2. Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
3. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
-
- 关键词:
-
客流量预测; 时空数据; 深度学习; 分割注意力机制残差网络; 城市功能区; 特征提取; 智慧城市; 智能交通
- Keywords:
-
passenger flow prediction; spatio-temporal data; deep learning; split-attention residual network; urban functional area; feature extraction; intelligent city; intelligent transportation
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202202014
- 摘要:
-
客流量预测是城市交通资源和公共安全智能化管理的重要依据。为了综合考虑城市乘客人群流动自身的既有周期性、趋势性和突发性,以及与城市物理和社会空间的耦合关系,在时空残差网络的基础上,本文提出了基于深度时空数据的分割注意力机制残差网络的城市细粒度客流量预测模型。首先以不同时空间隔的区域客流量历史数据为基础,引入分割注意力机制模块,为各模态的数据分配不同的权重,动态捕捉更高相关性的抽象数据特征;在时空数据的基础上,引入城市功能区属性作为联合特征,结合节假日、气候等外部特征,形成deep&wide网络结构,有效记忆重要特征对客流量变化的贡献。基于北京出租车数据的区域客流量对比实验表明,相比于传统的深度时空残差网络和其他经典机器学习模型,引入了分割注意力机制和城市功能区特征的预测模型能够更好地提取数据多元化的特征,预测精度明显优于其他同类别方法。
- Abstract:
-
Passenger flow prediction is an important basis for intelligent management of urban transportation resources and public safety. In order to comprehensively consider the existing periodicity, trend and suddenness of urban passenger crowd flow itself, as well as the coupling relationship with urban physical and social space, based on the spatio-temporal residual network, this paper proposes an urban fine-grained passenger flow prediction model based on the residual network of split-attention mechanism with deep spatio-temporal data. Firstly, based on the regional passenger flow history data of different spatio-temporal intervals, the segmented attention mechanism module is introduced to assign different weights to the data of each modality to dynamically capture the abstract data features of higher relevance; on the basis of spatio-temporal data, the city functional area attributes are introduced as joint features, which are combined with external features such as holidays and climate to form a deep&wide network structure to effectively remember the contribution of important features to passenger flow changes. The regional passenger flow comparison experiments based on Beijing cab data show that compared with the traditional deep spatio-temporal residual network and other classical machine learning models, [] the prediction model introducing segmented attention mechanism and urban functional area features can better extract the features of data diversity, and the prediction accuracy is significantly better than other methods of the same category.
备注/Memo
收稿日期:2022-02-20。
基金项目:国家自然科学基金面上项目(61871020);北京市属高校高水平创新团队建设计划项目(IDHT20190506)
作者简介:李伯涵,硕士研究生,主要研究方向为深度学习、智慧城市、时间序列数据;郭茂祖,教授,博士,博士生导师,北京建筑大学电气与信息工程学院院长,“建筑大数据智能处理方法研究”北京市重点实验室主任,中国人工智能学会机器学习专委会常委、中国建筑学会计算机性设计学术委员会常委、中国计算机学会生物信息学专委会副主任,主要研究方向为机器学习、智慧城市、计算生物学等。2019年以第一完成人获吴文俊人工智能自然科学二等奖。发表学术论文300余篇;赵玲玲,副教授,中国计算机学会生物信息学专委会委员,中国建筑学会计算性设计专委会委员,主要研究方向为机器学习、城市计算、生物信息学。主持和参与国家自然科学基金青年基金、面上项目、重点项目8项。发表学术论文40余篇。
通讯作者:赵玲玲. Email: zhaoll@hit.edu.cn
更新日期/Last Update:
1900-01-01