[1]戚银城,耿劭锋,赵振兵,等.基于特征迁移的螺栓图像超分辨率处理方法[J].智能系统学报,2023,18(4):858-866.[doi:10.11992/tis.202201009]
 QI Yincheng,GENG Shaofeng,ZHAO Zhenbing,et al.A method for super resolution processing of bolt image based on feature transfer[J].CAAI Transactions on Intelligent Systems,2023,18(4):858-866.[doi:10.11992/tis.202201009]
点击复制

基于特征迁移的螺栓图像超分辨率处理方法

参考文献/References:
[1] 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合: 应用分析与研究展望[J]. 电网技术, 2019, 43(5): 1575–1585
WANG Yi, CHEN Qixin, ZHANG Ning, et al. Fusion of the 5G communication and the ubiquitous electric internet of things: application analysis and research prospects[J]. Power system technology, 2019, 43(5): 1575–1585
[2] 仝卫国, 苑津莎, 李宝树. 图像处理技术在直升机巡检输电线路中的应用综述[J]. 电网技术, 2010, 34(12): 204–208
TONG Weiguo, YUAN Jinsha, LI Baoshu. Application of image processing in patrol inspection of overhead transmission line by helicopter[J]. Power system technology, 2010, 34(12): 204–208
[3] 赵振兵, 段记坤, 孔英会, 等. 基于门控图神经网络的栓母对知识图谱构建与应用[J]. 电网技术, 2021, 45(1): 98–106
ZHAO Zhenbing, DUAN Jikun, KONG Yinghui, et al. Construction and application of bolt and nut pair knowledge graph based on GGNN[J]. Power system technology, 2021, 45(1): 98–106
[4] 赵振兵, 金超熊, 戚银城, 等. 基于动态监督知识蒸馏的输电线路螺栓缺陷图像分类[J]. 高电压技术, 2021, 47(2): 406–414
ZHAO Zhenbing, JIN Chaoxiong, QI Yincheng, et al. Image classification of transmission line bolt defects based on dynamic supervision knowledge distillation[J]. High voltage engineering, 2021, 47(2): 406–414
[5] DONG Weisheng, ZHANG Lei, LUKAC R, et al. Sparse representation based image interpolation with nonlocal autoregressive modeling[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2013, 22(4): 1382–1394.
[6] WANG Lingfeng, WU Huaiyu, PAN Chunhong. Fast image upsampling via the displacement field[J]. IEEE transactions on image processing, 2014, 23(12): 5123–5135.
[7] ZHANG Yunfeng, FAN Qinglan, BAO Fangxun, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2018, 27(8): 3782–3797.
[8] 赵志辉, 赵瑞珍, 岑翼刚, 等. 基于稀疏表示与线性回归的图像快速超分辨率重建[J]. 智能系统学报, 2017, 63(1): 8–14
ZHAO Zhihui, ZHAO Ruizhen, CEN Yigang. Rapid super-resolution image reconstruction based on sparse representation and linear regression[J]. CAAI transactions on intelligent systems, 2017, 63(1): 8–14
[9] RASTI P, DEMIREL H, ANBARJAFARI G. Improved iterative back projection for video super-resolution[C]//2014 22nd Signal Processing and Communications Applications Conference. Piscataway: IEEE, 2014: 552?555.
[10] DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE transactions on image processing, 2013, 22(4): 1620–1630.
[11] YANOVSKY I, LAMBRIGTSEN B H, TANNER A B, et al. Efficient deconvolution and super-resolution methods in microwave imagery[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2015, 8(9): 4273–4283.
[12] ZHAO Ningning, WEI Qi, BASARAB A, et al. Fast single image super-resolution using a new analytical solution for problems[J]. IEEE transactions on image processing, 2016, 25(8): 3683–3697.
[13] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2): 295–307.
[14] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646?1654.
[15] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132?1140.
[16] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472?2481.
[17] GUO Yong, CHEN Jian, WANG Jingdong, et al. Closed-loop matters: dual regression networks for single image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5406?5415.
[18] FREEMAN W T, JONES T R, PASZTOR E C. Example-based super-resolution[J]. IEEE computer graphics and applications, 2002, 22(2): 56–65.
[19] YUE Huanjing, SUN Xiaoyan, YANG Jingyu, et al. Landmark image super-resolution by retrieving web images[J]. IEEE transactions on image processing, 2013, 22(12): 4865–4878.
[20] ZHENG Haitian, JI Mengqi, WANG Haoqian, et al. CrossNet: an end-to-end reference-based super resolution network using cross-scale warping[EB/OL]. (2018-01-27)[2022-01-05]. https://arxiv.org/abs/1807.10547.
[21] YUE Huanjing, LIU Jianjun, YANG Jingyu, et al. IENet: internal and external patch matching ConvNet for web image guided denoising[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(11): 3928–3942.
[22] ZHANG Zhifei, WANG Zhaowen, LIN Zhe, et al. Image super-resolution by neural texture transfer[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7974?7983.
[23] YANG Fuzhi, YANG Huan, FU Jianlong, et al. Learning texture transformer network for image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5790?5799.
[24] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5769?5779.
相似文献/References:
[1]赵振兵,王睿,赵文清,等.基于图知识推理的输电线路缺销螺栓识别方法[J].智能系统学报,2023,18(2):372.[doi:10.11992/tis.202205004]
 ZHAO Zhenbing,WANG Rui,ZHAO Wenqing,et al.Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2023,18():372.[doi:10.11992/tis.202205004]
[2]刘玉铠,周登文.基于多路特征渐进融合和注意力机制的轻量级图像超分辨率重建[J].智能系统学报,2024,19(4):863.[doi:10.11992/tis.202209045]
 LIU Yukai,ZHOU Dengwen.Lightweight super-resolution reconstruction via progressive multi-path feature fusion and attention mechanism[J].CAAI Transactions on Intelligent Systems,2024,19():863.[doi:10.11992/tis.202209045]

备注/Memo

收稿日期:2022-01-05。
基金项目:国家自然科学基金项目(61871182);河北省省级科技计划资助项目(F2020502009).
作者简介:戚银城,教授,主要研究方向为电力系统通信与信息处理。承担国家自然科学基金、国网福建电科院、国网山东电科院项目等10余项。发表学术论文 80 余篇。;耿劭锋,硕士研究生,主要研究方向为电力图像超分辨率处理;赵振兵,教授,博士生导师,复杂能源系统智能计算教育部工程研究中心副主任,主要研究方向为电力视觉检测。主持国家自然科学基金项目等项目10余项,获省科技进步一等奖2项,授权发明专利16项,发表学术论文50余篇,出版专著2部。
通讯作者:赵振兵.E-mail:zhaozhenbing@necpu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com