[1]吴迪,贾鹤鸣,刘庆鑫,等.融合经验反思机制的教与学优化算法[J].智能系统学报,2023,18(3):629-641.[doi:10.11992/tis.202112043]
 WU Di,JIA Heming,LIU Qingxin,et al.Teaching and learning optimization algorithm based on empirical reflection mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(3):629-641.[doi:10.11992/tis.202112043]
点击复制

融合经验反思机制的教与学优化算法

参考文献/References:
[1] 贾鹤鸣, 李瑶, 孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J]. 自动化学报, 2022, 48(6): 1601–1615
JIA Heming, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on hybrid sooty tern optimization algorithm and genetic algorithm[J]. Acta automatica sinica, 2022, 48(6): 1601–1615
[2] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445–454
JIA Heming, JIANG Zichao, LI Yao. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and decision, 2022, 37(2): 445–454
[3] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182–1192
JIA Heming, LIU Yuxiang, LIU Qingxin, et al. Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of frontiers of computer science and technology, 2022, 16(5): 1182–1192
[4] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems[J]. Information sciences, 2012, 183(1): 1–15.
[5] 杨闰. 改进TLBO算法及其在天线优化设计中的应用[D]. 杭州: 杭州电子科技大学, 2019: 44?54.
YANG Run. Improved TLBO algorithm and its application in antenna optimization design[D]. Hangzhou: Hangzhou Dianzi University, 2019: 44?54.
[6] 麻利新. 基于教与学算法的风?火?蓄电力系统优化调度[D]. 银川: 宁夏大学, 2020: 31?38.
MA Lixin. Optimal dispatching of wind power-thermal power-pumped storage power system based on teaching and learning algorithm[D]. Yinchuan: Ningxia University, 2020: 31?38.
[7] 曾恋捷. 基于教与学优化算法的结构可靠性分析方法[D]. 广州: 暨南大学, 2020: 59?71.
ZENG Lianjie. Reliability analysis method based on teaching and learning optimization algorithm[D]. Guangzhou: Jinan University, 2020: 59?71.
[8] 李木子. 基于神经网络的手势识别技术研究[D]. 石家庄: 河北地质大学, 2021: 35?46.
LI Muzi. Research on gesture recognition technology based on neural network[D]. Shijiazhuang: Hebei GEO University, 2021: 35?46.
[9] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE transactions on evolutionary computation, 1997, 1(1): 67–82.
[10] 李丽荣, 杨坤, 王培崇. 融合头脑风暴思想的教与学优化算法[J]. 计算机应用, 2020, 40(9): 2677–2682
LI Lirong, YANG Kun, WANG Peichong. Improved teaching & learning based optimization with brain storming[J]. Journal of computer applications, 2020, 40(9): 2677–2682
[11] 欧阳城添, 周凯. 融合改进天牛须搜索的教与学优化算法[J]. 计算机工程与应用, 2022, 58(4): 91–99
OUYANG Chengtian, ZHOU Kai. Teaching-learning based optimization algorithm with improved beetle antennae search[J]. Computer engineering and applications, 2022, 58(4): 91–99
[12] 李丽荣, 李木子, 李崔灿, 等. 具有动态自适应学习机制的教与学优化算法[J]. 计算机工程与应用, 2020, 56(19): 62–67
LI Lirong, LI Muzi, LI Cuican, et al. Teaching and learning based optimization with dynamic self-adaptive learning[J]. Computer engineering and applications, 2020, 56(19): 62–67
[13] LAKSHMI V A, MOHANAIAH P. WOA-TLBO: whale optimization algorithm with Teaching-learning-based optimization for global optimization and facial emotion recognition[J]. Applied soft computing, 2021, 110: 107623.
[14] XU Yunlang, YANG Zhile, LI Xiaoping, et al. Dynamic opposite learning enhanced teaching–learning-based optimization[J]. Knowledge-based systems, 2020, 188: 104966.
[15] TSAI H C. Confined teaching-learning-based optimization with variable search strategies for continuous optimization[J]. Information sciences, 2019, 500: 34–47.
[16] SHUKLA A K, SINGH P, VARDHAN M. An adaptive inertia weight teaching-learning-based optimization algorithm and its applications[J]. Applied mathematical modelling, 2020, 77: 309–326.
[17] TAHERI A, RAHIMIZADEH K, RAO R V. An efficient balanced teaching-learning-based optimization algorithm with Individual restarting strategy for solving global optimization problems[J]. Information sciences, 2021, 576: 68–104.
[18] LI Yu, ZHAO Yiran, LIU Jingsen. Dynamic sine cosine algorithm for large-scale global optimization problems[J]. Expert systems with applications, 2021, 177: 114950.
[19] 贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104–116
JIA Heming, LIU Qingxin, LIU Yuxiang, et al. Hybrid Aquila and Harris Hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI transactions on intelligent systems, 2023, 18(1): 104–116
[20] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in engineering software, 2017, 114: 163–191.
[21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51–67.
[22] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46–61.
[23] 吕冰垚, 姜志翱, 宁春玉. 基于PSO和GA混合优化的FCM算法[J]. 长春理工大学学报(自然科学版), 2021, 44(6): 125–130
LYU Bingyao, JIANG Zhiao, NING Chunyu. FCM algorithm based on hybrid optimization of PSO and GA[J]. Journal of Changchun University of Science and Technology (natural science edition), 2021, 44(6): 125–130
[24] LIU Qingxin, LI Ni, JIA Heming, et al. Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation[J]. Mathematics, 2022, 10(7): 1014.
[25] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila Optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & industrial engineering, 2021, 157: 107250.
[26] LIU Qingxin, LI Ni, JIA Heming, et al. A hybrid arithmetic optimization and golden sine algorithm for solving industrial engineering design problems[J]. Mathematics, 2022, 10(9): 1567.
[27] 汪逸晖, 高亮. 乌鸦搜索算法的改进及其在工程约束优化问题中的应用[J]. 计算机集成制造系统, 2021, 27(7): 1871–1883
WANG Yihui, GAO Liang. Improvement of crow search algorithm and its application in engineering constrained optimization problems[J]. Computer integrated manufacturing systems, 2021, 27(7): 1871–1883
相似文献/References:
[1]拓守恒,邓方安,雍龙泉.改进教与学优化算法的LQR控制器优化设计[J].智能系统学报,2014,9(5):602.[doi:10.3969/j.issn.1673-4785.201304071]
 TUO Shouheng,DENG Fangan,YONG Longquan.Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm[J].CAAI Transactions on Intelligent Systems,2014,9():602.[doi:10.3969/j.issn.1673-4785.201304071]

备注/Memo

收稿日期:2021-12-30。
基金项目:全国教育科学规划教育部重点课题(DIA220374).
作者简介:吴迪,副教授,博士,主要研究方向为元启发式优化算法、现代教育技术;贾鹤鸣,教授,主要研究方向为群体智能优化算法与工程应用。主持福建省自然科学基金等项目10余项。发表学术论文60余篇;刘庆鑫,硕士研究生,主要研究方向为智能优化算法及现实应用
通讯作者:贾鹤鸣.E-mail:jiaheminglucky99@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com