[1]吴迪,贾鹤鸣,刘庆鑫,等.融合经验反思机制的教与学优化算法[J].智能系统学报,2023,18(3):629-641.[doi:10.11992/tis.202112043]
WU Di,JIA Heming,LIU Qingxin,et al.Teaching and learning optimization algorithm based on empirical reflection mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(3):629-641.[doi:10.11992/tis.202112043]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第3期
页码:
629-641
栏目:
学术论文—人工智能基础
出版日期:
2023-07-05
- Title:
-
Teaching and learning optimization algorithm based on empirical reflection mechanism
- 作者:
-
吴迪1, 贾鹤鸣2, 刘庆鑫3, 齐琦3, 王爽2
-
1. 三明学院 教育与音乐学院, 福建 三明 365004;
2. 三明学院 信息工程学院, 福建 三明 365004;
3. 海南大学 计算机科学与技术学院, 海南 海口 570228
- Author(s):
-
WU Di1, JIA Heming2, LIU Qingxin3, QI Qi3, WANG Shuang2
-
1. School of Education and Music, Sanming University, Sanming 365004, China;
2. School of Information Engineering, Sanming University, Sanming 365004, China;
3. School of Computer Science and Technology, Hainan University, Haikou 570228, China
-
- 关键词:
-
教与学优化算法; 经验反思机制; 动态自适应权重; 元启发式算法; 基准函数; 压力容器设计问题; 焊接梁设计问题; Wilcoxon秩和检验
- Keywords:
-
teaching and learning-based optimization; empirical reflection mechanism; dynamic adaptive weight; meta-heuristic algorithm; benchmark functions; pressure vessel design problem; welded beam design problem; Wilcoxon rank-sum test
- 分类号:
-
TP301.6
- DOI:
-
10.11992/tis.202112043
- 摘要:
-
针对传统教与学算法存在易陷入局部最优、收敛速度慢和求解精度低等问题,提出一种融合经验反思机制的教与学优化算法(empirical reflection teaching learning based optimization, ERTLBO)。首先在教学阶段引入经验反思机制,遴选精英个体引导普通个体向教师靠近,提高班级整体水平,从而提高算法全局探索能力。其次在学习阶段引入动态自适应权重,能够根据学生的适应度值对位置进行自适应扰动,进而实现个体位置的动态更新,提高算法跳出局部最优的能力。仿真实验选取23个基准测试函数对ERTLBO同其他变体和流行算法进行性能测试。实验结果表明,ERTLBO算法具有更好的寻优性能和求解稳定性。最后,通过2个工程设计问题进一步验证ERTLBO解决实际问题的有效性和优越性。
- Abstract:
-
In this paper, an empirical reflection teaching learning based optimization (ERTLBO) algorithm is proposed to solve the problems of easy falling into local optimum, slow convergence speed and low accuracy in traditional teaching-learning-based optimization. Firstly, the empirical reflection mechanism is introduced in the teaching stage to select elite individuals, guide ordinary individuals to approach teachers, and improve the overall level of the class, so as to improve the overall exploration ability of the algorithm. Secondly, the dynamic adaptive weight is introduced in the learning stage, which can adaptively disturb the position according to the fitness value of students, so as to realize dynamic updating of individual position and improve the ability of the algorithm to jump out of local optimum. In the experiment, 23 benchmark functions are selected to test the performance of ERTLBO, variant, and popular algorithms. Experimental results show that ERTLBO has better optimization performance and solution stability. Finally, the effectiveness and superiority of ERTLBO in solving practical problems are further verified through two engineering design problems.
备注/Memo
收稿日期:2021-12-30。
基金项目:全国教育科学规划教育部重点课题(DIA220374).
作者简介:吴迪,副教授,博士,主要研究方向为元启发式优化算法、现代教育技术;贾鹤鸣,教授,主要研究方向为群体智能优化算法与工程应用。主持福建省自然科学基金等项目10余项。发表学术论文60余篇;刘庆鑫,硕士研究生,主要研究方向为智能优化算法及现实应用
通讯作者:贾鹤鸣.E-mail:jiaheminglucky99@126.com
更新日期/Last Update:
1900-01-01