[1]唐嘉潞,杨钟亮,张凇,等.结合显微视觉和注意力机制的毛羽检测方法[J].智能系统学报,2022,17(6):1209-1219.[doi:10.11992/tis.202112035]
 TANG Jialu,YANG Zhongliang,ZHANG Song,et al.Detection of yarn hairiness combining microscopic vision and attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(6):1209-1219.[doi:10.11992/tis.202112035]
点击复制

结合显微视觉和注意力机制的毛羽检测方法

参考文献/References:
[1] 孙建奎, 王勃. 165dtex/36f涤纶FDY绊丝产生原因分析及对策[J]. 合成纤维, 2021, 50(10): 4–7
SUN Jiankui, WANG Bo. Discussion on the causes and countermeasures of overthrown yarn with 165 dtex/36 f polyester FDY[J]. Synthetic fiber in China, 2021, 50(10): 4–7
[2] 赵博. 减少纯化纤纱毛羽的研究与探讨[J]. 化纤与纺织技术, 2007, 36(4): 11–15
ZHAO Bo. Discussion and research of reducing the pure chemical fibre yarn hairiness[J]. Chemical fiber & textile technology, 2007, 36(4): 11–15
[3] ARENTS J, GREITANS M. Smart industrial robot control trends, challenges and opportunities within manufacturing[J]. Applied sciences, 2022, 12(2): 937.
[4] TOUNSADI H, METARFI Y, TALEB M, et al. Impact of chemical substances used in textile industry on the employee’s health: Epidemiological study[J]. Ecotoxicology and environmental safety, 2020, 197: 110594.
[5] RASMUSSE J. Human error mechanisms in complex work environments[J]. Reliability engineering & system safety, 1988, 22(1/2/3/4): 155–167.
[6] ACEMOGLU D, RESTREPO P. The race between man and machine: implications of technology for growth, factor shares, and employment[J]. American economic review, 2018, 108(6): 1488–1542.
[7] FABIJA?SKA A, JACKOWSKA-STRUMI??O L. Image processing and analysis algorithms for yarn hairiness determination[J]. Machine vision and applications, 2012, 23(3): 527–540.
[8] BISSI L, BARUFFA G, PLACIDI P, et al. Patch based yarn defect detection using Gabor filters[C]//2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Graz: IEEE, 2012: 240-244.
[9] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(3): 82–88
LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm[J]. Journal of textile research, 2021, 42(3): 82–88
[10] 李彦, 朱凌云. 基于图像处理的纽扣轮廓瑕疵检测[J]. 东华大学学报(自然科学版), 2021, 47(4): 69–74,134
LI Yan, ZHU Lingyun. Detection of button contour defects based on image processing[J]. Journal of Donghua University (natural science edition), 2021, 47(4): 69–74,134
[11] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[12] 车翔玖, 刘华罗, 邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038–2044
CHE Xiangjiu, LIU Hualuo, SHAO Qingbin. Fabric defect recognition algorithm based on improved Fast RCNN[J]. Journal of Jilin University (engineering and technology edition), 2019, 49(6): 2038–2044
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[14] 唐有赟, 盛晓伟, 徐洋, 等. 基于轻量级模型的经编布瑕疵在线检测算法[J]. 东华大学学报(自然科学版), 2020, 46(6): 922–928
TANG Youyun, SHENG Xiaowei, XU Yang, et al. Online defect detection algorithm of warp knitting fabric based on lightweight model[J]. Journal of Donghua University (natural science edition), 2020, 46(6): 922–928
[15] 王泽霞, 陈革, 陈振中. 基于改进卷积神经网络的化纤丝饼表面缺陷识别[J]. 纺织学报, 2020, 41(4): 39–44
WANG Zexia, CHEN Ge, CHEN Zhenzhong. Surface defect recognition of chemical fiber yarn packages based on improved convolutional neural network[J]. Journal of textile research, 2020, 41(4): 39–44
[16] 张君扬, 景军锋. 应用激光三角测量法的化纤丝饼毛羽检测[J]. 西安工程大学学报, 2020, 34(3): 19–25
ZHANG Junyang, JING Junfeng. Hairiness detection of chemical fiber DTY packages using laser triangulation[J]. Journal of Xi’an Polytechnic University, 2020, 34(3): 19–25
[17] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
[18] 徐德. 显微视觉测量与控制[M]. 北京: 国防工业出版社, 2014.
[19] GESSERT N, BENGS M, WITTIG L, et al. Deep transfer learning methods for colon cancer classification in confocal laser microscopy images[J]. International journal of computer assisted radiology and surgery, 2019, 14(11): 1837–1845.
[20] 路凯, 钟跃崎, 朱俊平, 等. 基于视觉词袋模型的羊绒与羊毛快速鉴别方法[J]. 纺织学报, 2017, 38(7): 130–134,141
LU Kai, ZHONG Yueqi, ZHU Junping, et al. Rapid identification method of cashmere and wool based on bag-of-visual-word[J]. Journal of textile research, 2017, 38(7): 130–134,141
[21] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[EB/OL].(2019-04-16)[2021-12-15].https://arxiv.org/abs/1902.07296v1.
[22] TONG Kang, WU Yiquan, ZHOU Fei. Recent advances in small object detection based on deep learning: a review[J]. Image and vision computing, 2020, 97: 103910.
[23] MA Xinshu, LI Xiaohuan, TANG Xin, et al. Deconvolution Feature Fusion for traffic signs detection in 5G driven unmanned vehicle[J]. Physical communication, 2021, 47: 101375.
[24] HAN Chaojun, SHEN Fumin, LIU Li, et al. Visual spatial attention network for relationship detection[C]//MM’18: Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 510-518.
[25] 赵文清, 周震东, 翟永杰. 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15(2): 310–316
ZHAO Wenqing, ZHOU Zhendong, ZHAI Yongjie. SSD small target detection algorithm based on deconvolution and feature fusion[J]. CAAI transactions on intelligent systems, 2020, 15(2): 310–316
[26] ZHOU XINGYI, WANG DEQUAN, KR?HENBüHL P. Objects as points[EB/OL].(2019-02-19)[2021-12-15]. https://arxiv.org/abs/1904.07850.
[27] NAZIR T, NAWAZ M, RASHID J, et al. Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model[J]. Sensors (Basel, Switzerland), 2021, 21(16): 5283.
[28] 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20): 64–72
ZHANG Chenjia, ZHU Lei, YU Lu. Review of attention mechanism in convolutional neural networks[J]. Computer engineering and applications, 2021, 57(20): 64–72
[29] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[30] 江培营, 陶青川, 艾梦琴. 基于注意力机制和深度学习的钢板表面缺陷图像分类[J]. 计算机应用与软件, 2021, 38(9): 214–219
JIANG Peiying, TAO Qingchuan, AI Mengqin. Steel surface defect image classification based on attention mechanism and deep learning[J]. Computer applications and software, 2021, 38(9): 214–219
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[4]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[5]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[6]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[7]宁欣,李卫军,田伟娟,等.一种自适应模板更新的判别式KCF跟踪方法[J].智能系统学报,2019,14(1):121.[doi:10.11992/tis.201806038]
 NING Xin,LI Weijun,TIAN Weijuan,et al.Adaptive template update of discriminant KCF for visual tracking[J].CAAI Transactions on Intelligent Systems,2019,14():121.[doi:10.11992/tis.201806038]
[8]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报,2019,14(2):306.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14():306.[doi:10.11992/tis.201710019]
[9]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14():627.[doi:10.11992/tis.201905026]
[10]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14():1144.[doi:10.11992/tis.201905041]

备注/Memo

收稿日期:2021-12-15。
基金项目:国家自然科学基金项目(51905175);浙江省健康智慧厨房系统集成重点实验室开放基金项目(2014E10014).
作者简介:唐嘉潞,硕士研究生,主要研究方向为人工智能设计;杨钟亮,副教授,博士,主要研究方向为智能交互系统、人工智能设计。主持国家自然科学基金项目1项。发表学术论文30余篇;张凇,博士研究生,主要研究方向为智能制造
通讯作者:杨钟亮.E-mail:yzl@dhu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com