[1]蒲兴成,谭令.基于自适应动态窗口改进细菌算法与移动机器人路径规划[J].智能系统学报,2023,18(2):314-324.[doi:10.11992/tis.202112014]
PU Xingcheng,TAN Ling.A mobile robot path planning method based on adaptive DWA and an improved bacteria algorithm[J].CAAI Transactions on Intelligent Systems,2023,18(2):314-324.[doi:10.11992/tis.202112014]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第2期
页码:
314-324
栏目:
学术论文—智能系统
出版日期:
2023-05-05
- Title:
-
A mobile robot path planning method based on adaptive DWA and an improved bacteria algorithm
- 作者:
-
蒲兴成1,2, 谭令1
-
1. 重庆邮电大学 自动化学院,重庆 400065;
2. 铜陵学院 数学与计算机学院,安徽 铜陵 244061
- Author(s):
-
PU Xingcheng1,2, TAN Ling1
-
1. School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2. School of Mathematics and Computer Science, Tongling University, Tongling 244061, China
-
- 关键词:
-
复杂环境; 机器人; 细菌算法; 自适应; 动态窗口算法; 参考路径; 局部动态避障; 路径规划
- Keywords:
-
complex environment; robot; bacterial algorithm; self-adaptive; dynamic window algorithm; referential path; local dynamic avoiding obstacles; path planning
- 分类号:
-
TP273
- DOI:
-
10.11992/tis.202112014
- 摘要:
-
针对移动机器人在复杂环境下的路径规划问题,提出一种新的自适应动态窗口改进细菌算法,并将新算法应用于移动机器人路径规划。改进细菌算法继承了细菌算法与动态窗口算法(dynamic window algorithm, DWA)在避障时的优点,能较好实现复杂环境中移动机器人静态和动态避障。该改进算法主要分三步完成移动机器人路径规划。首先,利用改进细菌趋化算法在静态环境中得到初始参考规划路径。接着,基于参考路径,机器人通过自身携带的传感器感知动态障碍物进行动态避障并利用自适应DWA完成局部动态避障路径规划。最后,根据移动机器人局部动态避障完成情况选择算法执行步骤,如果移动机器人能达到最终目标点,结束该算法,否则移动机器人再重回初始路径,直至到达最终目标点。仿真比较实验证明,改进算法无论在收敛速度还是路径规划精确度方面都有明显提升。
- Abstract:
-
To solve the problem of mobile robot path planning in complex environments, a novel path planning method based on enhanced bacterial chemotaxis and an adaptive dynamic window algorithm is proposed. In addition to inheriting the benefits of bacterial chemotaxis and the dynamic window algorithm in avoiding obstacles, the novel method can also be used to avoid static or dynamic obstacles for mobile robots. It is typically divided into three steps when employed for mobile robot path planning. First, an initial referential planning path in a static environment is determined using the enhanced bacterial chemotaxis algorithm. Next, based on the reference path, the robot detects and avoids dynamic obstacles using its own sensors and completes path planning for local dynamic obstacle avoidance using adaptive DWA. Ultimately, the mobile robot chooses the next execution step based on the outcome of avoiding dynamic obstacles. If the robot is able to reach the final object point, the algorithm stops. Otherwise, the robot will return to the initial path until the final object point is reached. The comparison of simulation and experiment results demonstrates that the algorithm’s convergence speed and accuracy of path planning have been significantly enhanced.
备注/Memo
收稿日期:2021-12-07。
基金项目:国家自然科学基金项目(61876200);重庆市教委科研项目(KJZD-M202001901)
作者简介:蒲兴成,教授,博士,主要研究方向为多智能体系统、群智能算法和随机系统。主持和参与市级以上科研项目10余项,出版学术著作和教材各2部,发表学术论文50余篇;谭令,硕士研究生,主要研究方向为不确定环境下移动机器人路径规划
通讯作者:蒲兴成. E-mail: 1662598286@qq.com
更新日期/Last Update:
1900-01-01