[1]李军怀,武允文,王怀军,等.融合实体描述与路径信息的知识图谱表示学习模型[J].智能系统学报,2023,18(1):153-161.[doi:10.11992/tis.202112010]
 LI Junhuai,WU Yunwen,WANG Huaijun,et al.Knowledge graph representation learning model combining entity description and path information[J].CAAI Transactions on Intelligent Systems,2023,18(1):153-161.[doi:10.11992/tis.202112010]
点击复制

融合实体描述与路径信息的知识图谱表示学习模型

参考文献/References:
[1] XIE Ruobing, LIU Zhiyuan, JIA Jia, et al. Representation learning of knowledge graphs with entity descriptions[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 2659–2665.
[2] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247–261
LIU Zhiyuan, SUN Maosong, LIN Yankai, et al. Knowledge representation learning: a review[J]. Journal of computer research and development, 2016, 53(2): 247–261
[3] 李涛, 王次臣, 李华康. 知识图谱的发展与构建[J]. 南京理工大学学报, 2017, 41(1): 22–34
LI Tao, WANG Cichen, LI Huakang. Development and construction of knowledge graph[J]. Journal of Nanjing University of Science and Technology, 2017, 41(1): 22–34
[4] 张正航, 钱育蓉, 行艳妮, 等. 基于TransE的表示学习方法研究综述[J]. 计算机应用研究, 2021, 38(3): 656–663
ZHANG Zhenghang, QIAN Yurong, XING Yanni, et al. Survey of representation learning methods based on TransE[J]. Application research of computers, 2021, 38(3): 656–663
[5] LIN Yankai, LIU Zhiyuan, LUAN Huanbo, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal. Stroudsburg: Association for Computational Linguistics, 2015: 705?714.
[6] YANG Bishan, YIH W T, HE Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2014?12?20) [2021?12?01].https://arxiv.org/abs/1412.6575.
[7] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. New York: ACM, 2016: 2071?2080.
[8] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018, 32(1): 1811?1818.
[9] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans: Association for Computational Linguistics, 2018: 327?333.
[10] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1–11
WANG Zhiyue, YU Qing, WANG Nan, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer engineering and applications, 2020, 56(23): 1–11
[11] LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019?7?26)[2021?12?01].https://arxiv.org/abs/1907.11692.
[12] ZHU Yao, LIU Hongzhi, WU Zhonghai, et al. Representation learning with ordered relation paths for knowledge graph completion[EB/OL]. (2019?09?26) [2021?12?01].https://arxiv.org/abs/1909.11864.
[13] 缴霖境, 闫威. 融合实体概念描述与图像特征的知识图谱表示学习研究[J]. 计算机应用研究, 2021, 38(6): 1759–1764
JIAO Linjing, YAN Wei. Research on knowledge graph representation learning combining entity concept description and image features[J]. Application research of computers, 2021, 38(6): 1759–1764
[14] XIE Ruobing, LIU Zhiyuan, SUN Maosong. Representation learning of knowledge graphs with hierarchical types[C]//IJCAI’16: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 2965?2971.
[15] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[M]//The Semantic Web. Cham: Springer International Publishing, 2018: 593?607.
[16] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2013: 2787?2795.
[17] CAI Liwei, WANG W Y. KBGAN: adversarial learning for knowledge graph embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans: Association for Computational Linguistics, 2018: 1470?1480.
[18] SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. (2018?09?27)[2021?12?01].https://www.semanticscholar.org/paper/RotatE%3A-Knowledge-Graph-Embedding-by-Relational-in-Sun-Deng/8f096071a09701012c9c279aee2a88143a295935.
[19] JIANG Xiaotian, WANG Quan, WANG Bin. Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North. Minneapolis: Association for Computational Linguistics, 2019: 978?987.
[20] BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graphcompletion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 5184?5193.
[21] ZHANG Zhanqiu, CAI Jianyu, ZHANG Yongdong, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020, 34(3): 3065?3072.
[22] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020, 34(3): 3009?3016.
[23] YE Rui, LI Xin, FANG Yujie, et al. A vectorized relational graph convolutional network for multi-relational network alignment[EB/OL]. (2019?08?01)[2021?12?01].https://www.semanticscholar.org/paper/A-Vectorized-Relational-Graph-Convolutional-Network-Ye-Li/d6adbd838cb69d3694659bde7c1bf464a8438caf.
[24] KAZEMI S M, POOLE D. SimplE embedding for link prediction in knowledge graphs[EB/OL]. (2018?02?13)[2021?12?01].https://www.semanticscholar.org/paper/SimplE-Embedding-for-Link-Prediction-in-Knowledge-Kazemi-Poole/70af3ee98c53441d9090119f7b76efb1b6d03edd.
[25] NIU Guanglin, ZHANG Yongfei, LI Bo, et al. Rule-guided compositional representation learning on knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020, 34(3): 2950?2958.
相似文献/References:
[1]崔婉秋,杜军平,周南,等.基于用户意图理解的社交网络跨媒体搜索与挖掘[J].智能系统学报,2017,12(6):761.[doi:10.11992/tis.201706075]
 CUI Wanqiu,DU Junping,ZHOU Nan,et al.Social network cross-media searching and mining based on user intention[J].CAAI Transactions on Intelligent Systems,2017,12():761.[doi:10.11992/tis.201706075]
[2]常亮,张伟涛,古天龙,等.知识图谱的推荐系统综述[J].智能系统学报,2019,14(2):207.[doi:10.11992/tis.201805001]
 CHANG Liang,ZHANG Weitao,GU Tianlong,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14():207.[doi:10.11992/tis.201805001]
[3]贾中浩,古天龙,宾辰忠,等.旅游知识图谱特征学习的景点推荐[J].智能系统学报,2019,14(3):430.[doi:10.11992/tis.201810032]
 JIA Zhonghao,GU Tianlong,BIN Chenzhong,et al.Tourism knowledge-graph feature learning for attraction recommendations[J].CAAI Transactions on Intelligent Systems,2019,14():430.[doi:10.11992/tis.201810032]
[4]王坤,谢振平,陈梅婕.基于图约简的知识联想关系网络建模[J].智能系统学报,2019,14(4):679.[doi:10.11992/tis.201808009]
 WANG Kun,XIE Zhenping,CHEN Meijie.Modeling knowledge network on associative relations based on graph reduction[J].CAAI Transactions on Intelligent Systems,2019,14():679.[doi:10.11992/tis.201808009]
[5]秦娅,申国伟,余红星.基于Hadoop的大规模网络安全实体识别方法[J].智能系统学报,2019,14(5):1017.[doi:10.11992/tis.201809024]
 QIN Ya,SHEN Guowei,YU Hongxing.Large-scale network security entity recognition method based on Hadoop[J].CAAI Transactions on Intelligent Systems,2019,14():1017.[doi:10.11992/tis.201809024]
[6]张潇鲲,刘琰,陈静.引入外部词向量的文本信息网络表示学习[J].智能系统学报,2019,14(5):1056.[doi:10.11992/tis.201809037]
 ZHANG Xiaokun,LIU Yan,CHEN Jing.Representation learning using network embedding based on external word vectors[J].CAAI Transactions on Intelligent Systems,2019,14():1056.[doi:10.11992/tis.201809037]
[7]贾中浩,宾辰忠,古天龙,等.基于知识图谱和用户长短期偏好的个性化景点推荐[J].智能系统学报,2020,15(5):990.[doi:10.11992/tis.201904064]
 JIA Zhonghao,BIN Chenzhong,GU Tianlong,et al.Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences[J].CAAI Transactions on Intelligent Systems,2020,15():990.[doi:10.11992/tis.201904064]
[8]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729.[doi:10.11992/tis.202008007]
 CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16():729.[doi:10.11992/tis.202008007]
[9]罗玲,李硕凯,何清,等.基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统[J].智能系统学报,2021,16(4):819.[doi:10.11992/tis.202105047]
 LUO Ling,LI Shuokai,HE Qing,et al.Winter Olympic Q & A system based on knowledge map, TF-IDF and BERT model[J].CAAI Transactions on Intelligent Systems,2021,16():819.[doi:10.11992/tis.202105047]
[10]黄庆明,王树徽,许倩倩,等.以图像视频为中心的跨媒体分析与推理[J].智能系统学报,2021,16(5):835.[doi:10.11992/tis.202105042]
 HUANG Qingming,WANG Shuhui,XU Qianqian,et al.Image video centered cross-media analysis and reasoning[J].CAAI Transactions on Intelligent Systems,2021,16():835.[doi:10.11992/tis.202105042]
[11]饶官军,古天龙,常亮,等.基于相似性负采样的知识图谱嵌入[J].智能系统学报,2020,15(2):218.[doi:10.11992/tis.201811022]
 RAO Guanjun,GU Tianlong,CHANG Liang,et al.Knowledge graph embedding based on similarity negative sampling[J].CAAI Transactions on Intelligent Systems,2020,15():218.[doi:10.11992/tis.201811022]

备注/Memo

收稿日期:2021-12-03。
基金项目:国家重点研发计划项目(2018YFB1703000);陕西省现代装备绿色制造协同中心自主研发或开放基金项目(112-256092104).
作者简介:李军怀,教授,博士生导师,西安理工大学计算机科学与工程学院院长,CCF会员,主要研究方向为网络通信、物联网和云计算。以课题组组长、副组长负责开展国家863项目4项、省(部)市项目10余项。发表学术论文40余篇;武允文,硕士研究生,主要研究方向为物联网技术;王怀军,副教授,博士,CCF会员,主要研究方向为工业互联网和智能感知
通讯作者:王怀军.E-mail:wanghuaijun@xaut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com