[1]骆彦龙,毕晓君,吴立成,等.基于改进残差学习的东巴象形文字识别[J].智能系统学报,2022,17(1):79-87.[doi:10.11992/tis.202112009]
LUO Yanlong,BI Xiaojun,WU Licheng,et al.Dongba pictographs recognition based on improved residual learning[J].CAAI Transactions on Intelligent Systems,2022,17(1):79-87.[doi:10.11992/tis.202112009]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第1期
页码:
79-87
栏目:
学术论文—智能系统
出版日期:
2022-01-05
- Title:
-
Dongba pictographs recognition based on improved residual learning
- 作者:
-
骆彦龙1, 毕晓君2, 吴立成2, 李霞丽2
-
1. 哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001;
2. 中央民族大学 信息工程学院, 北京 100081
- Author(s):
-
LUO Yanlong1, BI Xiaojun2, WU Licheng2, LI Xiali2
-
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2. School of Information Engineering, Minzu University of China, Beijing 100081, China
-
- 关键词:
-
深度学习; 东巴象形文字; 图像识别; 数据集建立; ResNet模型; 残差跳跃连接; 下采样改进; 识别准确率
- Keywords:
-
deep learning; Dongba pictographs; image recognition; build dataset; ResNet model; residual shortcut connection; improved down-sampling; recognition accuracy
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202112009
- 摘要:
-
基于深度学习模型的东巴象形文字识别效果明显优于传统算法,但目前仍存在识别字数少、识别准确率低等问题。为此本文建立了包含1387个东巴象形文字、图片总量达到22万余张的数据集,大幅度增加了可识别字数,并辅助提高了东巴象形文字的识别准确率。同时,本文根据东巴象形文字相似度高、手写随意性大的特点,选择ResNet模型作为改进的网络结构,设计了残差跳跃连接方式和卷积层的数量,并通过加入最大池化层实现了下采样的改进。实验结果表明,在本文建立的东巴象形文字数据集上,改进的ResNet模型实现了东巴象形文字识别字数多且识别准确率高的最好效果,识别准确率可达到98.65%。
- Abstract:
-
Dongba pictographs recognition based on deep learning model has better recognition effect than that of traditional algorithms. However, these methods have disadvantages such as small number of recognizable Dongba pictographs and low recognition accuracy. Aiming at these problems, in this study, we build a novel dataset of Dongba pictographs that contains 1387 Dongba pictographs and more than 220 thousand images. Therefore, the number of recognizable Dongba pictographs is greatly increased and the Dongba pictographs recognition accuracy is improved. Since Dongba pictographs are characterized by high similarity and random writing, ResNet is adopted as an improved network structure. Moreover, we design a residual shortcut connection and the number of convolutional layers and introduce the max-pooling into the ResNet to improve down-sampling. The experimental results demonstrate that the improved ResNet model can recognize more Dongba characters, and has achieved the highest recognition accuracy 98.65% in our dataset.
备注/Memo
收稿日期:2021-12-05。
基金项目:国家社科基金重大项目(20&ZD279).
作者简介:骆彦龙,博士研究生,主要研究方向为图像识别、深度学习;毕晓君, 教授,博士生导师,主要研究方向为智能信息处理技术、数字图像处理、机器学习。主持国家重点研发计划项目、国家社科基金重大项目等国家级、省部级项目6项。获得高等学校科学技术进步一等奖1项、省部级科学技术奖7项。发表学术论 文170余篇;吴立成,教授,博士生导师,主要研究方向为智能机器人、人工智能。主持国家自然科学基金、863项目等国家级、省部级项目十余项。获教育部科技进步奖、江苏省科技进步奖各1项。发表学术论文80余篇。
通讯作者:毕晓君. E-mail:bixiaojun@hrbeu.edu.cn
更新日期/Last Update:
1900-01-01