[1]冀若含,董红斌.基于重复度分析的森林优化特征选择算法[J].智能系统学报,2022,17(6):1113-1122.[doi:10.11992/tis.202111060]
 JI Ruohan,DONG Hongbin.Feature selection using forest optimization algorithm based on duplication analysis[J].CAAI Transactions on Intelligent Systems,2022,17(6):1113-1122.[doi:10.11992/tis.202111060]
点击复制

基于重复度分析的森林优化特征选择算法

参考文献/References:
[1] LI Jundong, CHENG Kewei, WANG Suhang, et al. Feature selection: a data perspective[J]. ACM computing surveys, 2018, 50(6): 94.
[2] XUE Bing, ZHANG Mengjie, BROWNE W N, et al. A survey on evolutionary computation approaches to feature selection[J]. IEEE transactions on evolutionary computation, 2016, 20(4): 606–626.
[3] DASH M, LIU H. Feature selection for classification[J]. Intelligent data analysis, 1997, 1(1/2/3/4): 131–156.
[4] GHAEMI M, FEIZI-DERAKHSHI M R. Forest optimization algorithm[J]. Expert systems with applications, 2014, 41(15): 6676–6687.
[5] GHAEMI M, FEIZI-DERAKHSHI M R. Feature selection using Forest Optimization Algorithm[J]. Pattern recognition, 2016, 60: 121–129.
[6] 初蓓, 李占山, 张梦林, 等. 基于森林优化特征选择算法的改进研究[J]. 软件学报, 2018, 29(9): 2547–2558
CHU Bei, LI Zhanshan, ZHANG Menglin, et al. Research on improvements of feature selection using forest optimization algorithm[J]. Journal of software, 2018, 29(9): 2547–2558
[7] UNLER A, MURAT A, CHINNAM R B. mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification[J]. Information sciences, 2011, 181(20): 4625–4641.
[8] CERVANTE L, BING Xue, ZHANG Mengjie, et al. Binary particle swarm optimisation for feature selection: a filter based approach[C]//2012 IEEE Congress on Evolutionary Computation. Brisbane, 2012: IEEE, 2012: 1-8.
[9] KANNAN S S, RAMARAJ N. A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm[J]. Knowledge-based systems, 2010, 23(6): 580–585.
[10] SONG Xianfang, ZHANG Yong, GONG Dunwei, et al. Feature selection using bare-bones particle swarm optimization with mutual information[J]. Pattern recognition, 2021, 112: 107804.
[11] XU Hang, XUE Bing, ZHANG Mengjie. A duplication analysis-based evolutionary algorithm for biobjective feature selection[J]. IEEE transactions on evolutionary computation, 2021, 25(2): 205–218.
[12] JOHN LU Z Q. The elements of statistical learning: data mining, inference, and prediction[J]. Journal of the royal statistical society:series A (statistics in society), 2010, 173(3): 693–694.
[13] SUN Zehang, BEBIS G, MILLER R. Object detection using feature subset selection[J]. Pattern recognition, 2004, 37(11): 2165–2176.
[14] DAVIES S, RUSSELL S. NP-completeness of searches for smallest possible feature sets[C]//AAAI Symposium on Intelligent Relevance. Menlo Park: AAAI Press, 1994: 37-39.
[15] MARCANO-CEDEO A, QUINTANILLA-DOMíNGUEZ J, CORTINA-JANUCHS M G, et al. Feature sele-ction using Sequential Forward Selection and classify-cation applying Artificial Metaplasticity Neural Netwo-rk[C]// IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society. Glendale: IEEE, 2010: 2845-2850.
[16] PENG Hongyi, JIANG Chunfu, FANG Xiang, et al. Variable selection for Fisher linear discriminant analysis using the modified sequential backward selection algorithm for the microarray data[J]. Applied mathematics and computation, 2014, 238: 132–140.
[17] I??K ?. Dominant point detection based on suboptimal feature selection methods[J]. Expert systems with applications, 2020, 161: 113741.
[18] SETIAWAN D, KUSUMA W A, WIGENA A H. Sequential forward floating selection with two selection criteria[C]//2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS). Bali: IEEE, 2017: 395-400.
[19] SINGH P, CHAUDHURY S, PANIGRAHI B K. Hybrid MPSO-CNN: multi-level particle swarm optimized hyperparameters of convolutional neural network[J]. Swarm and evolutionary computation, 2021, 63: 100863.
[20] ZHOU Yu, ZHANG Wenjun, KANG Junhao, et al. A problem-specific non-dominated sorting genetic algorithm for supervised feature selection[J]. Information sciences, 2021, 547: 841–859.
[21] LI Yongbo, SOLEIMANI H, ZOHAL M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives[J]. Journal of cleaner production, 2019, 227: 1161–1172.
[22] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51–67.
[23] DONG Hongbin, PAN Yuyao, SUN Jing. High dimensional feature selection method of dual gbest based on PSO[C]//2020 IEEE Congress on Evolutionary Computation. Glasgow: IEEE, 2020: 1-8.
[24] AGRAWAL R K, KAUR B, SHARMA S. Quantum based Whale Optimization Algorithm for wrapper feature selection[J]. Applied soft computing, 2020, 89: 106092.
[25] LI Anda, XUE Bing, ZHANG Mengjie. Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies[J]. Applied soft computing, 2021, 106: 107302.
[26] XIE Qi, CHENG Gengguo, ZHANG Xiao, et al. Feature selection using improved forest optimization algorithm[J]. Information technology and control, 2020, 49(2): 289–301.
[27] MOUSTAKIDIS S P, THEOCHARIS J B. SVM-FuzCoC: a novel SVM-based feature selection method using a fuzzy complementary criterion[J]. Pattern recognition, 2010, 43(11): 3712–3729.
[28] HU Qinghua, CHE Xunjian, ZHANG Lei, et al. Feature evaluation and selection based on neighborhood soft margin[J]. Neurocomputing, 2010, 73(10/11/12): 2114–2124.
[29] HUANG Jinjie, CAI Yunze, XU Xiaoming. A hybrid genetic algorithm for feature selection wrapper based on mutual information[J]. Pattern recognition letters, 2007, 28(13): 1825–1844.
[30] ZHU Wenzhi, SI Gangquan, ZHANG Yanbin, et al. Neighborhood effective information ratio for hybrid feature subset evaluation and selection[J]. Neurocomputing, 2013, 99: 25–37.
[31] TABAKHI S, MORADI P, AKHLAGHIAN F. An unsupervised feature selection algorithm based on ant colony optimization[J]. Engineering applications of artificial intelligence, 2014, 32: 112–123.
[32] XUE Bing, ZHANG Mengjie, BROWNE W N. Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms[J]. Applied soft computing, 2014, 18: 261–276.
相似文献/References:
[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2():34.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[4]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[5]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10():215.[doi:10.3969/j.issn.1673-4785.201405063]
[6]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[7]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10():583.[doi:10.3969/j.issn.1673-4785.201412001]
[8]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9():210.[doi:10.3969/j.issn.1673-4785.201307014]
[9]郭雨萌,李国正.一种多标记数据的过滤式特征选择框架[J].智能系统学报,2014,9(3):292.[doi:10.3969/j.issn.1673-4785.201403064]
 GUO Yumeng,LI Guozheng.A filtering framework for the multi-label feature selection[J].CAAI Transactions on Intelligent Systems,2014,9():292.[doi:10.3969/j.issn.1673-4785.201403064]
[10]滕旭阳,董红斌,孙静.面向特征选择问题的协同演化方法[J].智能系统学报,2017,12(1):24.[doi:10.11992/tis.201611029]
 TENG Xuyang,DONG Hongbin,SUN Jing.Co-evolutionary algorithm for feature selection[J].CAAI Transactions on Intelligent Systems,2017,12():24.[doi:10.11992/tis.201611029]

备注/Memo

收稿日期:2021-11-30。
基金项目:黑龙江自然科学基金资助项目(LH2020F023).
作者简介:冀若含,硕士研究生,主要研究方向为演化算法、特征选择;董红斌,教授,博士生导师,中国计算机学会高级研究员,主要研究方向为多智能体系统、机器学习。主持和完成国家自然科学基金项目、工信部基础研究项目、黑龙江省自然科学基金项目等。荣获黑龙江省高校科学技术奖和黑龙江省优秀高等教育科学成果奖。发表学术论文90余篇,主编教材2部
通讯作者:董红斌.E-mail:donghongbin@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com