[1]章杭奎,刘栋军,孔万增.面向跨被试RSVP的多特征低维子空间嵌入的ERP检测[J].智能系统学报,2022,17(5):1054-1061.[doi:10.11992/tis.202111059]
 ZHANG Hangkui,LIU Dongjun,KONG Wanzeng.ERP detection of multi-feature embedding in the low-dimensional subspace for cross-subject RSVP[J].CAAI Transactions on Intelligent Systems,2022,17(5):1054-1061.[doi:10.11992/tis.202111059]
点击复制

面向跨被试RSVP的多特征低维子空间嵌入的ERP检测

参考文献/References:
[1] 周燕, 潘丽丽, 陈蓉玉, 等. 结合自适应融合网络与哈希的图像检索算法[J]. 计算机工程与科学, 2021, 43(9): 1616–1622
ZHOU Yan, PAN Lili, CHEN Rongyu, et al. A novel image retrieval algorithm with adaptive fusion network and hash[J]. Computer engineering & science, 2021, 43(9): 1616–1622
[2] 毛莺池, 唐江红, 王静, 等. 基于Faster R-CNN的多任务增强裂缝图像检测方法[J]. 智能系统学报, 2021, 16(2): 286–293
MAO Yingchi, TANG Jianghong, WANG Jing, et al. Multi-task enhanced dam crack image detection based on Faster R-CNN[J]. CAAI transactions on intelligent systems, 2021, 16(2): 286–293
[3] 丁斌. 基于非线性哈希的图像与视频检索算法研究[D]. 北京: 北京邮电大学, 2020.
DING Bin. Research on image and video retrieval algorithm based on nonlinear hashing[D]. Beijing: Beijing University of Posts and Telecommunications, 2020.
[4] WOODMAN G F. A brief introduction to the use of event-related potentials in studies of perception and attention[J]. Attention, perception & psychophysics, 2010, 72(8): 2031–3046.
[5] LIU Shuang, WANG Wei, SHENG Yue, et al. Improving the cross-subject performance of the ERP-based brain-computer interface using rapid serial visual presentation and correlation analysis rank[J]. Frontiers in human neuroscience, 2020, 14–296.
[6] SOLIS-ESCALANTE T, GENTILETTI G G, YANEZ-SUAREZ O. Single trial P300 detection based on the empirical mode decomposition[C]//2006 International Conference of the IEEE Engineering in Medicine and Biology Society. New York, IEEE, 2006: 1157?1160.
[7] KRUSIENSKI D J, SELLERS E W, MCFARLAND D J, et al. Toward enhanced P300 speller performance[J]. Journal of neuroscience methods, 2008, 167(1): 15–21.
[8] RIVET B, SOULOUMIAC A, ATTINA V, et al. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface[J]. IEEE transactions on bio-medical engineering, 2009, 56(8): 2035–2043.
[9] RIVET B, CECOTTI H, SOULOUMIAC A, et al. Theoretical analysis of xDAWN algorithm: application to an efficient sensor selection in a p300 BCI[C]//2011 19th European Signal Processing Conference. Barcelona, IEEE, 2011: 1382?1386.
[10] LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of neural engineering, 2018, 15(5)–056013.
[11] ZANINI P, CONGEDO M, JUTTEN C, et al. Transfer learning: a Riemannian geometry framework with applications to brain–computer interfaces[J]. IEEE transactions on biomedical engineering, 2018, 65(5): 1107–1116.
[12] HE He, WU Dongrui. Transfer learning for brain-computer interfaces: a euclidean space data alignment approach[J]. IEEE transactions on bio-medical engineering, 2020, 67(2): 399–410.
[13] WON K, KWON M, JANG S, et al. P300 speller performance predictor based on RSVP multi-feature[J]. Frontiers in human neuroscience, 2019, 13–261.
[14] BARACHANT A, BONNET S, CONGEDO M, et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications[J]. Neurocomputing, 2013, 112: 172–178.
[15] BARACHANT A, BONNET S, CONGEDO M, et al. Multiclass brain–computer interface classification by Riemannian geometry[J]. IEEE transactions on biomedical engineering, 2012, 59(4): 920–928.
[16] CHEN Yilun, WIESEL A, ELDAR Y C, et al. Shrinkage algorithms for MMSE covariance estimation[J]. IEEE transactions on signal processing, 2010, 58(10): 5016–5029.
[17] IZENMAN A J. Linear discriminant analysis[M]//Springer Texts in Statistics. New York: Springer New York, 2013: 237?280.
[18] MATRAN-FERNANDEZ A, POLI R. Towards the automated localisation of targets in rapid image-sifting by collaborative brain-computer interfaces[J]. PLoS one, 2017, 12(5)–e0178498.
[19] ZHANG Shangen, WANG Yijun, ZHANG Lijian, et al. A benchmark dataset for RSVP-based brain-computer interfaces[J]. Frontiers in neuroscience, 2020, 14–568000.
[20] LEDOIT O, WOLF M. Honey, I shrunk the sample covariance matrix[J]. Journal of portfolio management, 2004, 30(4): 110–119.
[21] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579–2605.
[22] 狄洋. 基于脑电个体差异性的身份识别方法研究[D]. 天津: 天津大学, 2019.
DI Yang. Research on individual identification approaches based on EEG signals[D]. Tianjin: Tianjin University, 2019.
[23] 刘晶. 基于事件相关电位的跨个体脑—机接口研究[D]. 天津: 天津大学, 2014.
LIU Jing. Research on subject-independent BCI based on event-related potential[D]. Tianjin: Tianjin University, 2014.

备注/Memo

收稿日期:2021-11-30。
基金项目:国家重点研发计划项目(2017YFE0116800);国家自然科学基金项目(U20B2074,U1909202)
作者简介:章杭奎,硕士研究生,主要研究方向为脑机协同图像检索、跨被试事件相关电位检测;刘栋军,硕士研究生,主要研究方向为脑机协同智能、脑电迁移学习;孔万增,教授、博士生导师,博士,主要研究方向为人工智能与模式识别、嵌入式可穿戴计算、脑机交互与认知计算。2018年度吴文俊人工智能技术发明奖获得者。发表学术论文近百篇
通讯作者:孔万增. E-mail:kongwanzeng@hdu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com