[1]屈东东,贺利乐,何林.改进的轻量化人脸识别算法[J].智能系统学报,2023,18(3):544-551.[doi:10.11992/tis.202111051]
 QU Dongdong,HE Lile,HE Lin.Improved lightweight face recognition algorithm[J].CAAI Transactions on Intelligent Systems,2023,18(3):544-551.[doi:10.11992/tis.202111051]
点击复制

改进的轻量化人脸识别算法

参考文献/References:
[1] 李东博, 黄铝文. 重加权稀疏主成分分析算法及其在人脸识别中的应用[J]. 计算机应用, 2020, 40(3): 717–722
LI Dongbo, HUANG Lyuwen. Reweighted sparse principal component analysis algorithm and its application in face recognition[J]. Journal of computer applications, 2020, 40(3): 717–722
[2] 徐竟泽, 吴作宏, 徐岩, 等. 融合PCA、LDA和SVM算法的人脸识别[J]. 计算机工程与应用, 2019, 55(18): 34–37
XU Jingze, WU Zuohong, XU Yan, et al. Face recognition based on PCA, LDA and SVM algorithms[J]. Computer engineering and applications, 2019, 55(18): 34–37
[3] LIU Weiyang, WEN Yandong, YU Zhiding, et al. SphereFace: Deep Hypersphere Embedding for Face Recognition[C]//Proceedings of the 2017 IEEE conference on computer vision and pattern recognition. Piscataway: IEEE, 2017: 212?220.
[4] WANG Hao, WANG Yitong, ZHOU Zheng, et al. CosFace: large margin cosine loss for deep face recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5265?5274.
[5] DENG Jiankang, GUO Jia, YANG Jing, et al. Arcface: Additive angular margin loss for deep face recogniton[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(10): 5962–5979.
[6] SUN Yifan, CHENG Changmao, ZHANG Yuhan, et al. Circle loss: a unified perspective of pair similarity optimization[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6397?6406.
[7] 才华, 孙俊, 朱瑞昆, 等. 基于自适应圆边际的深度人脸识别算法[J]. 兵工学报, 2021, 42(11): 2424–2432
CAI Hua, SUN Jun, ZHU Ruikun, et al. Depth face recognition algorithm based on adaptive circle margin[J]. Acta armamentarii, 2021, 42(11): 2424–2432
[8] HOWARD A G, ZHU MENGLONG, CHEN BO, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017?04?17)[2021?11?29]. https://arxiv.org/abs/1704.0486.
[9] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[EB/OL]. (2017?07?04) [2021?11?29]. https://arxiv.org/abs/1707.01083.
[10] TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019?05?28) [2021?11?29]. https://arxiv.org/abs/1905.11946.
[11] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[EB/OL]. (2018?01?13)[2021?11?29]. https://arxiv.org/abs/1801.04381.
[12] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 1440?1448.
[13] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
[14] DENG Jiankang, GUO Jia, ZHOU Yuxian, et al. RetinaFace: single-stage dense face localisation in the wild[EB/OL]. (2019?03?02) [2021?11?29]. https://arxiv.org/abs/1905.00641.
[15] ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10): 1499–1503.
[16] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[EB/OL]. (2015?03?12)[2021?11?29].https://arxiv.org/abs/1503.03832.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[EB/OL]. (2015?12?10) [2021?11?29]. https://arxiv.org/abs/1512.03385.
[18] WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision. Cham: Springer, 2016: 499?515.
[19] WANG Feng, LIU Weiyang, LIU Haijun, et al. Additive margin softmax for face verification[EB/OL]. (2018?01?17) [2021?11?29]. https://arxiv.org/abs/1801.05599.
[20] YI Dong, LEI Zhen, LIAO Shengcai, et al. Learning face representation from scratch[EB/OL]. (2014?11?28) [2021?11?29].https://arxiv.org/abs/1411.7923.
[21] HUANG G B, LEARNED-MILLER E. Labeled faces in the wild: updates and new reporting procedures[R]. Amherst: University of Massachusetts, 2014.
[22] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database forStudying face recognition in unconstrained environments[R]. Amherst: University of Massachusetts, 2007.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2014?12?22) [2021?11?29]. https://arxiv.org/abs/1412.6980.
[24] 张典, 汪海涛, 姜瑛, 等. 基于轻量级网络的实时人脸识别算法研究[J]. 计算机科学与探索, 2020, 14(2): 317–324
ZHANG Dian, WANG Haitao, JIANG Ying, et al. Research on real-time face recognition algorithm based on lightweight network[J]. Journal of frontiers of computer science and technology, 2020, 14(2): 317–324
[25] GUO Yandong, ZHANG Lei, HU Yuxiao, et al. MS-celeb-1M: a dataset and benchmark for large-scale face recognition[EB/OL]. (2016?07?27)[2021?11?29]. https://arxiv.org/abs/1607.08221.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2021-11-29。
基金项目:陕西省教育厅专项科研项目(21JK0732).
作者简介:屈东东,硕士研究生,主要研究方向为计算机视觉、深度学习;贺利乐,教授,博士生导师,主要研究方向为机器人智能化技术、机器学习。2015年获陕西省高等学校科学技术奖二等奖,2016年获陕西省科学技术奖三等奖。获发明专利授权5项,出版专著1部,教材4部,发表学术论文86篇;何林,讲师,主要研究方向为深度学习
通讯作者:何林.E-mail:helin716@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com