[1]毕志臻,杨德刚,冯骥.面向超大规模数据的自适应谱聚类算法[J].智能系统学报,2023,18(2):251-259.[doi:10.11992/tis.202110038]
 BI Zhizhen,YANG Degang,FENG Ji.Self-adaptive spectral clustering algorithm for ultra-large-scale data[J].CAAI Transactions on Intelligent Systems,2023,18(2):251-259.[doi:10.11992/tis.202110038]
点击复制

面向超大规模数据的自适应谱聚类算法

参考文献/References:
[1] HARTIGAN J A, WONG M A. A K-means clustering algorithm[J]. Journal of the royal statistical society:series C (applied statistics), 1979, 28(1): 100–108.
[2] B?CKLUND H, HEDBLOM A, NEIJMAN N. A density-based spatial clustering of application with noise[J]. Data mining TNM033, 2011, 33: 11–30.
[3] KARYPIS G, HAN E H, KUMAR V. Chameleon: hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8): 68–75.
[4] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Advances in neural information processing systems. Vancouver: MIT Press, 2002: 849?856.
[5] WANG Liang, BEZDEK J C, LECKIE C, et al. Selective sampling for approximate clustering of very large data sets[J]. International journal of intelligent systems, 2008, 23(3): 313–331.
[6] CHEN Wenyen, SONG Yangqiu, BAI Hongjie, et al. Parallel spectral clustering in distributed systems[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(3): 568–586.
[7] CAI Deng, CHEN Xinlei. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE transactions on cybernetics, 2015, 45(8): 1669–1680.
[8] WU Lingfei, CHEN Pinyu, YEN I E H, et al. Scalable spectral clustering using random binning features[C]//KDD ’18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 2506?2515.
[9] YANG Libo, LIU Xuemei, NIE Feiping, et al. Large-scale spectral clustering based on representative points[J]. Mathematical problems in engineering, 2019, 2019: 5864020.
[10] 叶茂, 刘文芬. 基于快速地标采样的大规模谱聚类算法[J]. 电子与信息学报, 2017, 39(02): 278–284
YE Mao, LIU Wenfen. A large-scale spectral clustering algorithm based on fast landmark sampling[J]. Journal of electronics and information, 2017, 39(02): 278–284
[11] HUANG Dong, WANG Changdong, WU Jiansheng, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE transactions on knowledge and data engineering, 2020, 32(6): 1212–1226.
[12] ZHU Qingsheng, FENG Ji, HUANG Jinlong. Natural neighbor: a self-adaptive neighborhood method without parameter K[J]. Pattern recognition letters, 2016, 80: 30–36.
[13] 冯骥. 自然邻居思想概念及其在数据挖掘领域的应用[D]. 重庆: 重庆大学, 2016: 25?28.
FENG Ji. Natural neighbor: the concepts and applications in data mining[D]. Chongqing: Chongqing University, 2016: 25?28.
[14] CHENG Dongdong, ZHU Qingsheng, HUANG Jinlong, et al. Natural neighbor-based clustering algorithm with local representatives[J]. Knowledge-based systems, 2017, 123: 238–253.
[15] 朱庆生, 陈治, 张程. 基于自然邻居流形排序图像检索技术研究[J]. 计算机应用研究, 2016, 33(04): 1265–1268+1276
ZHU Qingsheng, CHEN Zhi, ZHANG Cheng. Research on image retrieval techniques based on natural neighbor stream shape sorting[J]. Computer application research, 2016, 33(04): 1265–1268+1276
[16] 张忠林, 赵昱, 闫光辉. 自然邻居密度极值聚类算法[J]. 计算机工程与应用, 2021, 57(23): 200–210
ZHANG Zhonglin, ZHAO Yu, YAN Guanghui. Natural neighborhood density extreme value clustering algorithm[J]. Computer engineering and applications, 2021, 57(23): 200–210
[17] 冯骥, 冉瑞生, 魏延. 基于自然邻居邻域图的无参数离群检测算法[J]. 智能系统学报, 2019, 14(5): 998–1006
FENG Ji, RAN Ruisheng, WEI Yan. A parameter-free outlier detection algorithm based on natural neighborhood graph[J]. CAAI transactions on intelligent systems, 2019, 14(5): 998–1006
[18] YUAN Mengshi, ZHU Qingsheng. Spectral clustering algorithm based on fast search of natural neighbors[J]. IEEE access, 2020, 8: 67277–67288.
[19] ZHANG Yuru, DING Shifei, WANG Yanru, et al. Chameleon algorithm based on improved natural neighbor graph generating sub-clusters[J]. Applied intelligence, 2021, 51(11): 8399–8415.
[20] YU Shi. Multiclass spectral clustering[C]//Proceedings Ninth IEEE International Conference on Computer Vision. Nice: IEEE, 2003: 313?319.
[21] LI Zhenguo, WU Xiaoming, CHANG S F. Segmentation using superpixels: a bipartite graph partitioning approach[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 789?796.
[22] COUR T, BENEZIT F, SHI J. Spectral segmentation with multiscale graph decomposition[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 1124?1131.
[23] FERN X Z, BRODLEY C E. Solving cluster ensemble problems by bipartite graph partitioning[C]//ICML’04: Proceedings of the Twenty-first International Conference on Machine learning. New York: ACM, 2004: 36.
[24] GOLUB G H, VAN LOAN C F. Matrix computations[M]. Baltimore: Johns Hopkins University Press, 2012.
[25] STREHL A, GHOSH J. Cluster ensembles: a knowledge reuse framework for combining multiple partitions[J]. J mach learn res, 2003, 3: 583–617.

备注/Memo

收稿日期:2021-10-31。
基金项目:教育部人文社会科学研究项目(18XJC880002, 20YJAZH084);重庆市教委科学技术研究项目(KJQN201800539);重庆市研究生教育教学改革研究项目(yjg223068)
作者简介:毕志臻,硕士研究生,主要研究方向为数据挖掘;杨德刚,教授,博士,主要研究方向为智能算法、神经网络、复杂网络。主持及参与国家自然科学基金、省部级项目等20余项。发表学术论文50余篇;冯骥,副教授,博士,主要研究方向为数据挖掘、人工智能。主持及参与国家自然科学基金、省部级项目等10余项。发表学术论文10余篇
通讯作者:冯骥. E-mail:jifeng@cqnu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com